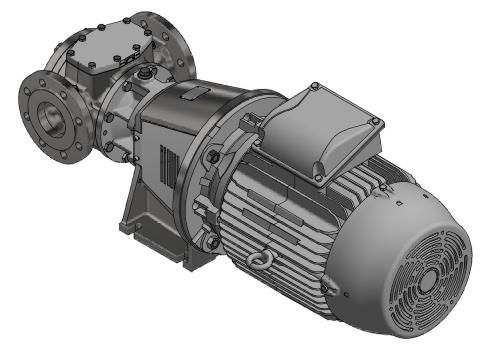

TopGear BLOC


INNENVERZAHNTE VERDRÄNGERPUMPEN

A.0500.757 - IM-TG BLOC/01.01 DE (11/2021)

ÜBERSETZUNG DER ORIGINALANLEITUNG

VOR DEM BETRIEB ODER DER WARTUNG DES PRODUKTS MUSS DIE BEDIENUNGSANLEITUNG GELESEN UND VERSTANDEN WERDEN.

CE EHE

> Johnson Pump®

EG-Konformitätserklärung

Maschinen-Richtlinie 2006/42/EG, Anhang IIA

Hersteller

SPX Flow Europe Limited Belgium Evenbroekveld 2-6 BE-9420 Erpe-Mere Belgien

Hiermit erklären wir, dass

TopGear Baureihe BLOC Innenverzahnte Verdrängerpumpen

Typen: TG BLOC15-50 TG BLOC23-65 TG BLOC58-80 TG BLOC86-100

ohne Antrieb oder als Baugruppe mit Antrieb die einschlägigen Bestimmungen der Maschinen-Richtlinie 2006/42/EG, Anhang I erfüllen.

Herstellererklärung

Maschinen-Richtlinie 2006/42/EG, Anhang IIB

Die teilmontierten Pumpen (Back-Pullout-Einheit) der Produktfamilie TopGear BLOC Verdrängerpumpen dürfen nur dann in Betrieb genommen werden, wenn sichergestellt wurde, dass die vollständige Maschine, zu der die betreffenden Pumpen gehören, diese Richtlinie erfüllt und eine entsprechende Erklärung vorliegt.

Erpe-Mere, 01. Januar 2021

Frank Vander Beken Leiter der Niederlassung

Inhalt

1.0	Einle	eitung.			7
	1.1	Allgen	neines		7
	1.2	Inemp	fangnahi	me, Handhabung und Lagerung	7
		1.2.1	•	ngnahme	
		1.2.2		bung	
		1.2.3	Ŭ	g	
	1.3				
		1.3.1 1.3.2	Ü	inaggregate	
		1.3.2	1.3.2.1	Transport der Pumpenaggregate	
			1.3.2.2	Installation	
			1.3.2.3	Vor der Inbetriebnahme des Pumpenaggregats	
			1.3.2.4	Typenschild – CE-Konformitätserklärung	
	1.4			chtlinien	
2.0			•	Pumpe	
	2.1	٠,		g	
3.0	·			sche Informationen	
	3.1	'		ardteile	
	3.2				
		3.2.1		nsaugender Betrieb	
	0.0	3.2.2		eitsventil – Funktionsprinzip	
	3.3				
	3.4	•		wendung	
	3.5		U	naften	
	3.6				
	3.7			L. D. L. A.: I	
		3.7.1 3.7.2	-	egel einer Pumpe ohne Antriebäuschpegel des Pumpenaggregats	
		3.7.2		ingen	
	3.8	Materi		en	
			'	ionen	
	0.10			ichsenwerkstoffe	
			•	e Temperatur der Innenbauteile	
		3.10.3	Betrieb	unter hydrodynamischen Schmierbedingungen	19
		3.10.4	Max. Dre	ehmoment der Pumpenwelle und Rotorwerkstoffkombination .	19
	3.11	Masse	enträghei	tsmoment	20
	3.12	Axial-	und Rad	ialspiel	20
	3.13	Spiel z	zwischen	n den Zahnrädern	20
	3.14	Max. C	aröße de	r Feststoffpartikel	20
	3.15	Weller	ndichtun	g	20
	3.16	Sicher	heitsven	til	21
		3.16.3	Sicherhe	eitsventil – relative Einstellung	22

	3.16.4	Explosionszeichnungen und Teilelisten	24
		3.16.4.1 Einfachwirkendes Sicherheitsventil	24
		3.16.4.2 Beheiztes Federgehäuse	25
		3.16.4.3 Doppeltwirkendes Sicherheitsventil	25
3.17	Installa	ation	26
		Allgemein	
		•	
	0.17.2	3.17.2.1 Kurze Ansaugleitung	
		3.17.2.2 Zugänglichkeit	
		3.17.2.3 Installation im Freien	
		3.17.2.4 Installation in Innenräumen	
		3.17.2.5 Stabilität	
	3.17.3	Antriebe	
	011710	3.17.3.1 Anlaufmoment	
	3 174	Wellendrehung bei Pumpe ohne Sicherheitsventil	
		Wellendrehung bei Pumpe mit Sicherheitsventil	
	3.17.6	Saug- und Druckleitungen	
	3.17.0	3.17.6.1 Kräfte und Momente	
		3.17.6.2 Rohrleitungen	
		3.17.6.3 Absperrventile	
	0.100	3.17.6.4 Filter	
	3.17.7	Hilfsleitungen	
		3.17.7.1 Ablaufleitungen	
	0.450	3.17.7.2 Heizmäntel	
		Spülmedien	
	3.17.9	Richtlinien für den Zusammenbau	
		3.17.9.1 Transport des Pumpenaggregats	
		3.17.9.2 Fundament des Pumpenaggregats	
		3.17.9.3 Verstellgetriebe, Motoren	
		3.17.9.4 Elektromotorantrieb	
3.18		ıngen für das Anfahren	
	3.18.1	Allgemein	35
	3.18.2	Reinigung der Pumpe	35
		3.18.2.1 Reinigung der Saugleitung	35
	3.18.3	Entlüften und Auffüllen der Pumpe	35
	3.18.4	Checkliste - Erstinbetriebnahme	36
		Anfahren	
		Abschalten	
		Betriebsstörungen	
0.40		_	
3.19		behebung	
	3.19.1	Anleitungen für die Wiederverwendung oder Entsorgung	
		3.19.1.1 Wiederverwendung	
		3.19.1.2 Entsorgung	40
3.20	Wartur	ngsanleitungen	41
	3.20.1	Allgemein	41
	3.20.2	Vorbereitung	41
		3.20.2.1 Arbeitsumgebung (am Standort)	
		3.20.2.2 Werkzeuge	
		3.20.2.3 Abschalten	
		3.20.2.4 Motorsicherheit	
		3.20.2.5 Lagerung	
		3.20.2.6 Reinigung der Außenflächen	
		3.20.2.7 Elektroinstallation	
		3.20.2.8 Ablassen des Fördermediums	42

		3.20.2.9 Flüssigkeitskreisläufe	42
		3.20.3 Besondere Bauteile	43
		3.20.3.1 Muttern und Schrauben	
		3.20.3.2 Teile aus Kunststoff oder Gummi	
		3.20.3.3 Flachdichtungen	
		3.20.3.4 Filter oder Ansaugfilter	
		3.20.3.5 Wälzlager	
		3.20.3.6 Gleitlager	
		3.20.4 Front-Pullout	
		3.20.5 Back-Pullout	
		3.20.6 Einstellung der Toleranzen	
		3.20.7 Bezeichnung der Gewindeanschlüsse	
		3.20.7.1 Gewindeanschlüsse Rp (Beispiel Rp 1/2)	
		3.20.7.2 Gewindeverschraubungen G (Beispiel: G 1/2)	
4.0	Anle	eitungen für die Montage und Demontage	
	4.1	Allgemein	46
	4.2	Werkzeuge	
	4.3		
	4.4	Nach der Demontage	
	4.5	Kupplung	
		4.5.1 Allgemein	
		4.5.2 TG BLOC15-50 bis TG BLOC86-100 – Montage der Kupplung	
	4.6	Wälzlager	
		4.6.1 Allgemein	
		4.6.2 TG BLOC15-50 bis TG BLOC86-100 – Demontage	
		4.6.3 TG BLOC15-50 bis TG BLOC86-100 – Montage	
	4.7	Gleitringdichtung	
		4.7.1 Allgemein	
		4.7.2 Vorbereitung	
		4.7.3 Spezialwerkzeuge	
		4.7.4 Allgemeine Montageanweisungen	
		4.7.5 Montage des rotierenden Teils	
		4.7.6 Montage des stationären Sitzes	50
	4.8	Pumpen	
		4.8.1 Allgemein	
		4.8.2 TG BLOC15-50 bis TG BLOC86-100	50
	4.9	Sicherheitsventil	51
		4.9.1 Demontage	51
		4.9.2 Montage	51
5.0	Ехр	olosionszeichnungen und Teilelisten	52
	5.1	TG BLOC15-50 bis TG BLOC86-100	52
		5.2.1 Hydraulikteil	53
		5.2.2 Lagerträger	53
		5.2.3 Mantel	
		5.2.4 Einfach wirkende Gleitringdichtung	54
6.0	Maß	ßzeichnungen	55
	6.1	Standardpumpe	55
		6.1.1 TG BLOC15-50 bis 86-100	
	6.2	Flanschverbindungen	

	6.2.1	TG BLOC15-50 bis 86-100	56
		6.2.1.1 Grauguss	56
		6.2.1.2 Edelstahl	57
6.3	Mänte	I (S) am Pumpendeckel und mit Gewindeanschluss	57
	6.3.1	TG BLOC15-50 bis 86-100	57
6.4	Sicher	heitsventile	58
	6.4.1	Einfachwirkendes Sicherheitsventil	58
	6.4.2	Doppeltwirkendes Sicherheitsventil	58
		Beheiztes Sicherheitsventil	
	6.4.4	Beheiztes doppeltwirkendes Sicherheitsventil	59
6.5	Gewic	chte - Masse	60

1.0 Einleitung

1.1 Allgemeines

Dieses Betriebshandbuch enthält wesentliche Informationen über die TopGear Pumpenaggregate. Bitte lesen Sie es vor der Montage, der Inbetriebnahme oder Wartungsarbeiten sorgfältig durch. Das Handbuch muss stets für den Maschinenführer zugänglich sein.

Wichtig!

Das Pumpenaggregat darf nur für die empfohlenen und angegebenen Anwendungen eingesetzt werden. Andere Einsätze sind allenfalls nach Beratung mit Ihrem Händler möglich.

Flüssigkeiten, für die das Pumpenaggregat nicht ausgelegt ist, können das Pumpenaggregat beschädigen und möglicherweise Personen verletzen.

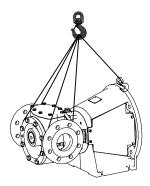
1.2 Inempfangnahme, Handhabung und Lagerung

1.2.1 Inempfangnahme

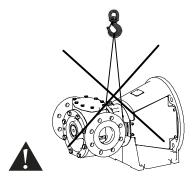
Entfernen Sie alle Verpackungsmaterialien unmittelbar nach der Lieferung. Prüfen Sie das Frachtgut gleich nach Erhalt auf Beschädigungen. Vergewissern Sie sich, dass die Angaben des Typenschilds mit dem Lieferschein und der Bestellung übereinstimmen.

Transportschäden und/oder fehlende Teile müssen schriftlich erfasst werden, der Bericht ist dem Spediteur sofort zu übergeben. Des Weiteren benachrichtigen Sie bitte Ihren Lieferanten.

Bei allen Pumpen ist die Seriennummer auf dem Typenschild eingeschlagen.


Geben Sie diese Nummer bei jeder Korrespondenz mit Ihrem Händler vor Ort an.

Die führenden Stellen der Seriennummer bezeichnen das Baujahr.


° EF	∥ ଅଧୁ TopGear (€ ି)
Model	: TG	
Serial	No:	
SP)	SPX Flow Europe Limited - Belgium Evenbroekveld 2-6, 9420 Erpe-Mere	
0	> Johnson Pump www.johnson-pump.com / www.spxflow.com)

1.2.2 Handhabung

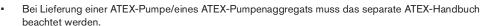
Überprüfen Sie das Gewicht des Pumpenaggregates. Teile, die schwerer als 20 kg sind, müssen mit Seilschlingen und geeigneten Hebegeräten, wie zum Beispiel Kran oder Gabelstapler, gehoben werden. Siehe Abschnitt 6.6 Gewichte – Masse.

Verwenden Sie stets mindestens zwei Hebeschlingen. Diese müssen so gesichert werden, dass sie nicht rutschen können. Das Pumpenaggregat soll in aufrechter Lage transportiert werden.

Heben Sie das Pumpenaggregat immer an mindestens drei Punkten an. Unsachgemäßes Anheben kann zu Personenschaden führen und/oder das Pumpenaggregat beschädigen.

1.2.3 Lagerung

Wird das Pumpenaggregat nicht sofort nach der Lieferung in Betrieb genommen, so ist einmal wöchentlich die Pumpenwelle eine volle Umdrehung zu drehen. Dies sichert die Verteilung des schützenden Öls.


1.3 Sicherheit

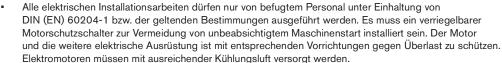
1.3.1 Allgemein

Wichtia!

Das Pumpenaggregat darf nur für den spezifizierten Zweck verwendet werden, setzen Sie sich bei betreffenden Anliegen unbedingt mit Ihrem Händler vor Ort in Verbindung.

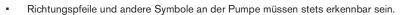
Eine Pumpe ist stets in Übereinstimmung mit den nationalen und den örtlichen Sanitär- und Sicherheitsvorschriften einzubauen und zu betreiben.

Beim Umgang mit der Pumpe ist stets geeignete Schutzkleidung zu tragen.


 Vor der Inbetriebnahme ist die Pumpe sicher zu befestigen, um Personenschäden bzw. Schäden am Pumpenaggregat zu verhindern.

 Auf beiden Seiten der Pumpe sind in der Anlage Absperrventile einzubauen, um den Einlass und Auslass zu Service- und Wartungszwecken abzusperren. Überprüfen Sie, dass die Pumpe ohne Gefahr für Personen sowie ohne Verunreinigung der Umwelt oder Geräten in der Nähe entleert werden kann.

Alle drehenden Teile müssen stets ausreichend abgedeckt sein, um Personenschäden zu vermeiden.


In explosionsgefährdeten Umgebungen müssen Motoren, die als explosionsgeschützt eingestuft sind, zusammen mit speziellen Sicherheitsvorrichtungen verwendet werden. Hinweise hierzu erhalten Sie bei der zuständigen Behörde.

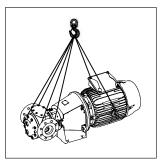
- Unsachgemäße Montage kann zu tödlichen Verletzungen führen.
- Motoren und exponierte Geräte müssen vor Staub, Flüssigkeiten und Gasen, die Überhitzung, Kurzschluss und Korrosion verursachen, geschützt werden.

 Fördert die Pumpe Flüssigkeiten, die Menschen oder die Umwelt schädigen können, so ist ein geeigneter Auffangbehälter anzubringen, in den austretende Flüssigkeiten ablaufen können. Die (gesamte) Leckageflüssigkeit ist abzuleiten und umweltgerecht zu entsorgen.

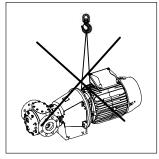
 Übersteigt die Temperatur des Pumpenaggregats oder von Teilen davon den Wert von 60 °C, so sind diese Stellen mit der Aufschrift "Heiße Oberfläche" zu kennzeichnen, um Verbrennungen zu verhindern.

8

- Das Pumpenaggregat darf ohne vorheriges Vorheizen/Vorkühlen keinen starken Temperaturänderungen durch das Fördermedium ausgesetzt werden. Große Temperatursprünge können zu Rissbildungen oder gar Explosionen führen, die wiederum Personenschäden herbeiführen können.
- Die Pumpe darf nicht außerhalb der zulässigen Leistungsbereiche betrieben werden. Siehe Abschnitt 3.5 Haupteigenschaften.
- Vor dem Öffnen der Pumpe oder einem Eingriff in das System ist die Stromzufuhr zu unterbrechen und die Schalter vor unabsichtlichem Betätigen zu sichern. Beim Öffnen des Pumpenaggregats sind die Hinweise für Demontage/Montage in Kapitel 4.0 einzuhalten. Werden diese Hinweise nicht befolgt, können Teile der Pumpe oder die Pumpe selbst beschädigt werden. In diesem Fall erlischt die Garantie.
- Innenverzahnte Verdrängerpumpen dürfen nie trocken laufen. Trockenlauf erzeugt Wärme, diese kann innere Teile wie Lagerschalen und die Wellenabdichtung beschädigen. Wenn die Pumpe kurzzeitig ohne Fördermedium anlaufen muss, sollte zumindest eine Benetzung der Förderkammer sichergestellt sein.


Hinweis! Eine geringe Flüssigkeitsmenge sollte in der Pumpe verbleiben, um eine Schmierwirkung für die Innenteile zu gewährleisten. Besteht die Gefahr eines längeren Trockenlaufs, ist ein geeigneter Trockenlaufschutz zu installieren. Informieren Sie sich hierzu bei Ihrem Händler vor Ort.

• Sollte die Pumpe nicht zufriedenstellend funktionieren, nehmen Sie Kontakt mit Ihrem Händler vor Ort auf.


1.3.2 Pumpenaggregate

1.3.2.1 Transport der Pumpenaggregate

Verwenden Sie einen Kran, Gabelstapler oder anderes geeignetes Hebegerät.

Sichern Sie die Hebeschlingen, um das Vorderteil der Pumpe und den hinteren Teil des Motors zu befestigen. (Ist der Motor mit Hebeösen ausgestattet, können die Schlingen an diesen befestigt werden). Vergewissern Sie sich, dass die Last vor dem Anheben gleichmäßig verteilt ist. **Achtung!** Stets zwei Hebegurte verwenden.

Warnung

Heben Sie das Pumpenaggregat niemals an nur einem Befestigungspunkt an. Bei fehlerhaftem Hebevorgang besteht Verletzungsgefahr und/oder das Aggregat kann beschädigt werden.

1.3.2.2 Installation

Alle Pumpenaggregate müssen mit einem elektrischen Trennschalter ausgestattet sein, damit das versehentliche Anfahren während der Installation, Wartungs- oder anderen Arbeiten an der Einheit vermieden wird.

Warnung

Vor Arbeiten am Pumpenaggregat muss der Trennschalter auf AUS gedreht und gesichert werden. Unbeabsichtigtes Starten kann zu schweren Personenschäden führen.

Das Pumpenaggregat muss auf einer ebenen Fläche befestigt und im Fundament verschraubt oder mit gummiummantelten Füßen versehen werden.

Die Leitungsanschlüsse zur Pumpe müssen belastungsfrei und sicher an der Pumpe montiert sein und gut abgestützt werden. Fehlerhaft angebrachte Leitungen können die Pumpe und das System beschädigen.

Warnung

Elektromotoren sind von Fachpersonal gemäß EN60204-1 zu installieren. Bei fehlerhafter Elektroinstallation könnten das Pumpenaggregat und das System elektrischen Strom führen; es besteht Lebensgefahr.

Elektromotoren müssen mit ausreichender Kühlungsluft versorgt werden. Elektromotoren dürfen nicht in luftdichten Schränken, Hauben usw. untergebracht werden.

Staub, Flüssigkeiten und Gase, die Überhitzung verursachen und sich entzünden können, müssen vom Motor abgeleitet werden.

Warnung

Pumpenaggregate in potenziell explosionsgefährdeten Umgebungen sind mit explosionssicheren Motoren (Ex-Klasse) auszustatten. Durch statische Elektrizität verursachte Funkenbildung kann zu Elektroschocks und Explosionen führen. Die Pumpe und das System müssen ordnungsgemäß geerdet sein. Die entsprechenden Vorschriften erhalten Sie bei den zuständigen Behörden. Eine fehlerhafte Installation kann zu tödlichen Verletzungen führen.

1.3.2.3 Vor der Inbetriebnahme des Pumpenaggregats

Lesen Sie das Betriebs- und Sicherheitshandbuch der Pumpe. Stellen Sie sicher, dass die Installation gemäß den entsprechenden Angaben im Pumpenhandbuch ausgeführt wird.

Überprüfen Sie die Ausrichtung der Pumpen- und der Motorwelle. Die Justierung könnte sich während des Transports, des Anhebens und der Montage des Pumpenaggregats geändert haben.

Warnung

Das Pumpenaggregat darf nur für die empfohlenen und im Angebot spezifizierten Fördermedien eingesetzt werden. Bei Fragen nehmen Sie bitte Kontakt mit Ihrem Händler auf. Für die Pumpe ungeeignete Fluide können die Pumpe und andere Teile des Pumpenaggregats beschädigen; es kann auch zur Verletzung von Personen führen.

1.3.2.4 Typenschild - CE-Konformitätserklärung

Die Seriennummer auf dem Typenschild ist bei allen Fragen in Zusammenhang mit dem Pumpenaggregat, der Installation, der Wartung usw. stets anzugeben.

Sollten sich die Betriebsbedingungen der Pumpe ändern, setzen Sie sich bitte mit Ihrem Händler in Verbindung, damit gewährleistet ist, dass die Pumpe sicher und verlässlich arbeitet.

Dies betrifft auch größere Änderungen, z. B. den Austausch des Motors oder der Pumpe bei einem bestehenden Pumpenaggregat.

1.4 Technische Richtlinien

Menge	Symbol	Einheit				
Dynamische Viskosität	μ	mPa·s = cP (Centipoise)				
Kinematische Viskosität	$v = \frac{\mu}{\rho}$	$\rho = \text{Dichte} \frac{[kg]}{dm^3}$ $v = \text{kinematische Viskosität} \left[\frac{mm^2}{s}\right] = \text{cSt (Centistokes)}$				
Hinweis! In diese	em Handbuch v	wird nur die dynamische Viskosität angegeben.				
Druck	р	[bar]				
Δp Differenzdruck = [bar]						
	p _m	Höchstdruck am Druck-Flansch (Auslegungsdruck) = [bar]				
Hinweis! Wenn r	nicht anders an	geführt, bedeutet Druck in diesem Handbuch immer "relativer Druck" [bar].				
Haltedruckhöhe verantwortlich	NPSHa	Der vorhandene NPSHa-Wert ist der verfügbare NPSH-Wert, der sich aus der frei verfügbaren Zulaufhöhe abzüglich des Dampfdruckes der geförderten Flüssigkeit ergibt. NPSHa wird in Meter Flüssigkeitssäule ausgedrückt. Der Betreiber ist für die richtige Bestimmung des NPSHa-Wertes				
	NPSHr	Der NPSHr-Wert ist die Zulaufhöhe, die erforderlich ist, damit die Pumpe kavitationsfrei und ohne Leistungseinbußen laufen kann. Dieser Wert wurde vom Pumpenhersteller rechnerisch ermittelt und durch Versuche bestätigt. Der NPSHr-Wert wird am Ansaugflansch an dem Punkt gemessen, wo durch Leistungsabfall ein Druckverlust von mindestens 4 % auftritt.				
Hinweis! In diese	m Handbuch g	ilt, wenn nicht anders angeführt, NPSH = NPSHr				
Achten Sie bei d	ler Auswahl e	einer Pumpe darauf, dass NPSHa mindestens 1 m höher als NPSHr ist.				

2.0 Beschreibung der Pumpe

Pumpen der Baureihe TopGear BLOC sind innenverzahnte Verdrängerpumpen. Sie werden aus Grauguss oder Edelstahl hergestellt. TG BLOC-Pumpen werden aus mehreren Modulen gefertigt, was vielfältige Gestaltungsmöglichkeiten eröffnet: Heiz-/Kühlmäntel (Dampf), verschiedene Lager-, Laufzeug- und Wellenwerkstoffe sowie direkt aufgebaute Sicherheitsventile.

2.1 Typbezeichnung

Die Merkmale und Eigenschaften der Pumpen sind gemäß folgendem Schlüssel beschrieben, der auf dem Typenschild aufgedruckt ist.

Beispiel:

TG	BLOC	58-80		G2	S	SG	2	G1	ΑV
1	2	3	4	5	6	7	8	9	10

1. Name der Baureihe

TG = TopGear

2. Bezeichnung der Baureihe

BLOC = Pumpe in Blockbauweise mit einfach wirkender Gleitringdichtung

Hydraulisches F\u00f6rdervolumen per 100 Umdrehungen (in dm³) und Nenndurchmesser der Pumpenanschl\u00fcsse (in mm)

G BLOC15-50

TG BLOC23-65

TG BLOC58-80

TG BLOC86-100

4. Anwendung

Nicht für Lebensmittelkontakt

FD für Lebensmittelkontakt

5. Pumpenwerkstoff und Anschlussart

- G2 Pumpe aus Grauguss mit PN16-Flanschen nach DIN2533
- G3 Pumpe aus Grauguss mit PN20-Flanschen nach ANSI 150 lbs
- R2 Pumpe aus Edelstahl mit PN25/PN40
- R3 Pumpe aus Edelstahl mit PN20-Flanschen nach ANSI 150 lbs
- R4 Pumpe aus Edelstahl mit PN50-Flanschen nach ANSI 300 lbs
- R5 Pumpe aus Edelstahl mit PN16-Flanschen nach DIN2533

6. Optionen für Heizmantel der Pumpenabdeckung

- O Pumpendecke ohne Mantel
- S Pumpendeckel mit Mantel und Gewindeanschluss

7. Werkstoffe für Ritzelbuchse und Ritzel

- SG Lager aus vergütetem Stahl und Ritzel aus Gusswerkstoff
- CG Lager aus Hartkohle und Ritzel aus Gusswerkstoff
- BG Lager aus Bronze und Ritzel aus Gusswerkstoff
- BR Lager aus Bronze und Ritzel aus Edelstahl
- CR Lager aus Hartkohle und Ritzel aus Edelstahl
- UR Lager aus Hartmetall und Ritzel aus Edelstahl

Beispiel:

TG BLOC 58-80 G2 S SG 2 G1 AV 5 7 8 9 3 6 10

8. Werkstoffe des Ritzelzapfens

- 2 Ritzelzapfen aus vergütetem Stahl
- 4 Ritzelzapfen aus kolsterisiertem Edelstahl
- 5 Ritzelzapfen aus nitriertem Edelstahl

9. Werkstoffe für Rotor und Welle

- G1 Rotor aus Grauguss und Welle aus Stahl
- G5 Rotor aus Grauguss, Welle aus nitriertem Edelstahl
- R4 Rotor aus rostfreiem Stahl, Welle aus Edelstahl
- R5 Rotor aus rostfreiem Stahl, Welle aus nitriertem Edelstahl

10. Anordnung der Wellenabdichtung

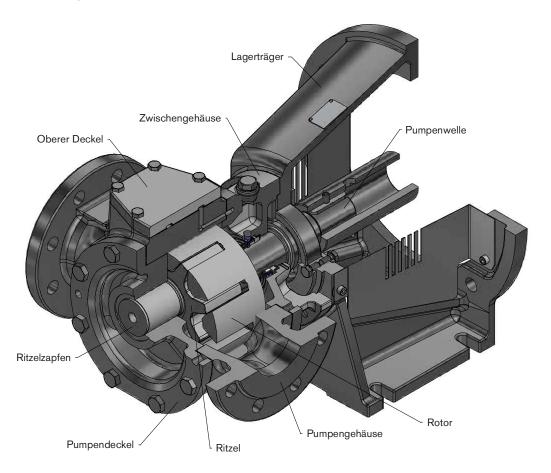
Einfach wirkende Gleitringdichtung, Typ Burgmann MG12

- AV Gleitringdichtung Burgmann MG12 Carbon/SiC/FPM (Fluorkohlenstoff)
- WV Gleitringdichtung Burgmann MG12 SiC/SiC/FPM (Fluorkohlenstoff)

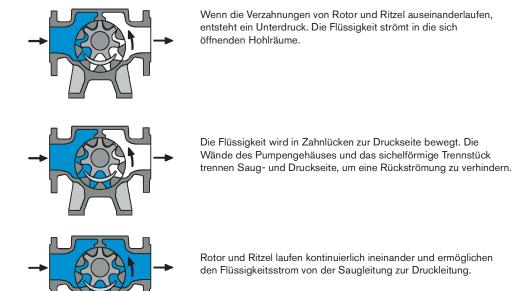
Einfach wirkende Gleitringdichtung Typ Burgmann M7N

- HV Gleitringdichtung Burgmann M7N SiC/Carbon/FPM (Fluorkohlenstoff)
- HT Gleitringdichtung Burgmann M7N SiC/Carbon/PTFE-ummantelt
- WV Gleitringdichtung Burgmann M7N SiC/SiC/FPM (Fluorkohlenstoff)
- WT Gleitringdichtung Burgmann M7N SiC/SiC/PTFE-FFKM

Einfach wirkende Gleitringdichtung Typ Roplan RTI 239


RV Gleitringdichtung Roplan RTI 239 SiC/Carbon/FPM (Fluorkohlenstoff)

Option einfach wirkende Gleitringdichtung ohne Gleitringdichtung


GS XX Einzeldichtungsteile – Dichtung auf Anfrage

3.0 Allgemeine Technische Informationen

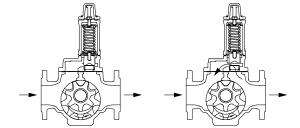
3.1 Pumpenstandardteile

3.2 Arbeitsweise

Eine Umkehr der Laufrichtung ändert die Fließrichtung.

3.2.1 Selbstansaugender Betrieb

TopGear-Pumpen sind dann selbstansaugend, wenn ausreichend Flüssigkeit in der Pumpe vorhanden ist, um die Öffnungen und die toten Bereiche zwischen den Zähnen zu füllen. (Hinweise zum selbstansaugenden Betrieb entnehmen Sie auch Abschnitt 3.17.6.2 Rohrleitungen).


3.2.2 Sicherheitsventil – Funktionsprinzip

Wegen des Prinzips der positiven Verdrängung muss ein Sicherheitsventil installiert werden, das die Pumpe vor Überdruck schützt. Es kann in der Pumpe oder in der Baugruppe installiert werden.

Das Sicherheitsventil begrenzt den Differenzdruck (Δp) zwischen Saug- und Druckseite, nicht jedoch den Höchstdruck innerhalb der Anlage.

Wenn beispielsweise das Fördermedium an Druckstutzen nicht abf ießen kann, weil diese versperrt sind, kann die Pumpe durch Überdruck stark beschädigt werden.

Das Sicherheitsventil ist ein Überströmkanal, der das Medium zurück zur Ansaugseite leitet, wenn ein bestimmtes Druckniveau erreicht worden ist.

- Das Sicherheitsventil schützt die Pumpe nur in einer Fließrichtung vor Überdruck.
 Es bietet keinen Schutz gegen Überdruck, wenn die Pumpe in die Gegenrichtung dreht. Soll die Pumpe in beide Laufrichtungen eingesetzt werden, muss ein doppeltwirkendes Sicherheitsventil verwendet werden.
- Ein geöffnetes Sicherheitsventil ist ein Anzeichen dafür, dass die Installation nicht korrekt arbeitet.
 Die Pumpe muss sofort abgeschaltet werden. Ermitteln und beheben Sie das Problem, bevor Sie die Pumpe wieder einschalten.
- Wenn kein Sicherheitsventil an der Pumpe installiert ist, müssen andere Schutzvorrichtungen gegen Überdruck vorgesehen werden.
- Hinweis! Verwenden Sie das Sicherheitsventil nicht als Durchf ussregler. Die Flüssigkeit läuft dann in der Pumpe um und erhitzt sich rasch.

Wenn Sie einen Durchf ussregler benötigen, setzen Sie sich bitte mit Ihrem Händler vor Ort in Verbindung.

3.3 Geräusch

TopGear-Pumpen sind rotierende Verdrängerpumpen. Beim Kontakt von rotierenden Innenteilen (z. B. Rotor/Ritzel) untereinander kann es zu Druckabweichungen kommen, wodurch sie lauter arbeiten als beispielsweise Zentrifugalpumpen. Darüber hinaus müssen die Geräusche des Antriebs und der Installation berücksichtigt werden. Wenn der Geräuschpegel im Betriebsbereich 85 dB(A) überschreiten kann, muss Gehörschutz getragen werden. Siehe auch Abschnitt 3.7 Geräuschpegel.

3.4 Allgemeine Anwendung

Wichtig!

Die Pumpe ist, wie in dem Angebot spezif ziert, auf das Befördern füssiger Medien ausgelegt. Wenden sie sich an Ihren Händler vor Ort, falls sich eine oder mehrere Kenngrößen der Anwendung ändern.

Für die Pumpe ungeeignete Flüssigkeiten können das Pumpenaggregat beschädigen. Es kann auch zur Verletzung von Personen kommen.

Für die korrekte Anwendung müssen sämtliche folgenden Punkte berücksichtigt werden: Produktname, Konzentration und Dichte. Produktviskosität, Produktpartikel (Größe, Härte, Konzentration, Form), Produktreinheit, Produkttemperatur, Eintritts- und Austrittsdruck, U/min usw.

3.5 Haupteigenschaften

Die Pumpengröße ist gekennzeichnet durch das Verdrängungsvolumen per 100 Umdrehungen, ausgedrückt in Liter (oder dm³), gefolgt durch die Anschlussnennweite, ausgedrückt in Millimeter.

TG BLOC Pumpengröße	d (mm)	B (mm)	D (mm)	Vs-100 (dm³)	n.max (min ⁻¹)	n.mot (min ⁻¹)	Q.th (I/s)	Q.th (m³/h)	v.u (m/s)	v.i (m/s)	∆p (bar)	p.test (bar)
15-50	50	40	100	14,5	1500		3,6	13,1	7,9	1,8	16	24
						1450	3,5	12,6	7,6	1,8		
23-65	65	47	115	22,7	1500		5,7	20,4	9,0	1,7	16	24
						1450	5,5	19,7	8,7	1,7		
58-80	80	60	160	57,6	1050		10,1	36,3	8,8	2,0	16	24
						960	9,2	33,2	8,0	1,8		
86-100	100	75	175	85,8	960	960	13,7	49,4	8,8	1,7	10	15

Legende

d : Anschlussnennweite (Einlass- und Auslassanschluss)

B : Breite des Ritzels und Länge der Rotorzähne

D : Außendurchmesser des Rotors (Außendurchmesser)

Vs-100 : Verdrängungsvolumen pro 100 Umdrehungen n.max : maximal zulässige Wellendrehzahl in U/min

n.mot : Nenndrehzahl des Elektromotors mit Direktantrieb (bei 50 Hz Frequenz)

Q.th : theoretische Kapazität ohne Schlupf bei Differenzdruck = 0 bar

v.u : Umfangsgeschwindigkeit des Rotors

v.i : Fließgeschwindigkeit des Fördermediums in den saug- und druckseitigen Anschlüssen bei Qth

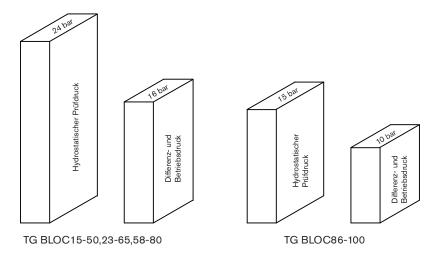
(Einlass- und Auslassanschluss)

Δp : maximaler Betriebsdruck = Differenzdruck

p.test : hydrostatischer Prüfdruck

Wellendichtungstyp	Max. Viskosität (mPa·s) *)
, , , , , , , , , , , , , , , , , , ,	GS
Einfach wirkende Gleitringdichtung	
GS mit Burgmann MG12	3000
GS mit Burgmann M7N	5000
GS mit Roplan RTI 239	7500

*) Anmerkung


Zahlenangaben beziehen sich auf Newtonsche Fluide bei Betriebstemperatur. Die maximal zulässige Viskosität zwischen den Gleitf ächen der Gleitringdichtung hängt von der Art des Fördermediums (Newtonsches Fluid, Kunststoff usw.), der Gleitgeschwindigkeit der Gleitf ächen und der Konstruktion der Gleitringdichtung ab.

3.6 Druck

Differenzdruck oder Betriebsdruck (p) ist der Druck, bei welchem die Pumpe normal arbeitet. Der maximale Differenzdruck der TopGear GP-Baureihe beträgt 16 bar. (86-100 10 bar)

Der hydrostatische Prüfdruck beträgt das 1,5-Fache des Differenzdrucks, d. h: Der hydrostatische Prüfdruck der TopGear BLOC-Reihe liegt bei 24 bar (für 86-100: 15 bar).

In der folgenden Abbildung sind verschiedene Arten von Drücken dargestellt.

3.7 Schallpegel

3.7.1 Schallpegel einer Pumpe ohne Antrieb

Schalldruckpegel (L_{pA})

Die folgende Tabelle enthält eine Übersicht über den A-bewerteten Schalldruckpegel, L_{pA}, der von einer Pumpe ohne Antrieb abgegeben wird, Messung nach ISO3744 und ausgedrückt in Dezibel dB(A). Der Referenzschalldruck beträgt 20 μPa.

Die Werte hängen davon ab, an welcher Position man misst, und wurden aus diesem Grund an der Pumpenvorderseite vorgenommen (im Abstand von einem Meter vom Pumpendeckel) und wurden auf Hintergrundgeräusche und Ref ektionen korrigiert.

Die aufgeführten Werte sind die höchsten Werte, die unter den nachstehenden Betriebsbedingungen gemessen wurden.

- Betriebsdruck: bis 10 bar
- Gefördertes Medium: Wasser, Viskosität = 1 mPa·s
- -% $n_{max} = -\%$ maximale Wellendrehzahl

TC BLOC Burners #80	(, , ,		1 - (40(4))				
TG BLOC Pumpengröße	n _{max} (min-1)	25 % n _{max}	50 % n _{max}	75 % n _{max}	100 % n _{max}	Ls (dB(A))	
15-50	1500	61	72	79	83	9	
23-65	1500	63	75	81	85	10	
58-80	1050	67	79	85	89	10	
86-100	960	69	80	86	90	11	

Schalldruckpegel (L_{wA})

Der Schalldruck L_w ist der Druck, den die Pumpe durch Schallwellen abgibt; dies ist der Vergleichswert für den Schalldruckpegel von Maschinen. Der Schalldruck Lp wirkt in einer Umgebung bei einem Abstand von 1 Meter.

$$L_{WA} = L_{pA} + Ls$$

Der A-bewertete Schallleistungspegel L_{WA} wird auch in Dezibel dB(A) angegeben. Der Referenzschallpegel beträgt 1 pW (= 10^{-12} W). $L_{\rm S}$ ist der Logarithmus der umgebenden Oberf äche in einer Distanz von 1 Meter von der Pumpe, ausgedrückt in dB(A), dieser wird in der letzten Spalte der vorstehenden Tabelle aufgeführt.

3.7.2 Der Geräuschpegel des Pumpenaggregats

Der Geräuschpegel des Antriebs (Motor, Getriebe ...) muss zu dem Geräuschpegel der Pumpe selbst addiert werden, um den gesamten Geräuschpegel des Pumpenaggregats zu ermitteln. Die Summe mehrerer Schallpegel muss logarithmisch berechnet werden.

Für eine schnelle Bestimmung des Gesamtschallpegels kann die folgende Tabelle herangezogen werden:

L ₁ -L ₂	0	1	2	3	4	5	6
L[f(L ₁ -L ₂)]	3,0	2,5	2,0	1,7	1,4	1,2	1,0

$$L_{gesamt} = L_1 + L_{korrigiert}$$

hierbei ist L_{gesamt} : der Gesamt-Geräuschpegel des Pumpenaggregats

L₁ : der höchste GeräuschpegelL₂ : der niedrigste Geräuschpegel

L_{koriniet}: von der Differenz zwischen beiden Geräuschpegeln abhängiger Wert

Bei mehr als zwei Werten kann diese Methode wiederholt werden.

Beispiel: Antriebseinheit : L₁ = 79 dB(A)

 $\begin{array}{ll} \text{Pumpe} & : \text{L}_{_2} = 75 \text{ dB(A)} \\ \text{Korrektur} & : \text{L}_{_1} - \text{L}_{_2} = 4 \text{ dB(A)} \\ \text{Laut Tabelle} & : \textbf{L}_{\text{korrigiert}} = \textbf{1,4 dB(A)} \end{array}$

 $L_{\text{gesamt}} = 79 + 1.4 = 80.4 \text{ dB(A)}$

3.7.3 Einwirkungen

Der tatsächliche Geräuschpegel des Pumpenaggregats kann aus mehreren Gründen von den in den vorstehenden Tabellen aufgeführten Werten abweichen.

- Die Geräuschentwicklung reduziert sich, wenn Flüssigkeiten mit hoher Viskosität gepumpt werden, da deren Schmierungs- und Dämpfungseigenschaften besser sind. Darüber hinaus erhöht sich wegen der höheren Flüssigkeitsreibung das Widerstandsdrehmoment des Ritzels, was zu einer geringeren Schwingungsamplitude führt.
- Die Geräuschentwicklung erhöht sich, wenn Flüssigkeiten mit niedriger Viskosität bei niedrigerem Betriebsdruck gefördert werden, da das Ritzel sich frei bewegen kann (niedrigere Belastung, weniger Flüssigkeitsreibung) und die Flüssigkeit einen ausreichenden Abstand vom Dampfpunkt hat.
- Vibrationen in den Leitungen, die Vibration der Grundplatte usw. führen zu höherer Geräuschentwicklung in der Anlage.

3.8 Materialoptionen

Die Gesamttemperaturen für ausgewählte Gehäusewerkstoffe sind in der folgenden Tabelle aufgeführt.

	Zulässige Mindes	ttemperatur (°C)	Zulässige Höchsttemperatur (°C)			
TG BLOC Pumpengröße	Gehäusew	erkstoffe	Gehäusewerkstoffe			
- umpengrose	Grauguss (C)	Edelstahl (R)	Grauguss (C)	Edelstahl (R)		
15-50	-10					
23-65		40		. 050		
58-80		-40	+300	+250		
86-100						

Anmerkungen:

 Je nach den verwendeten Materialien für Lagerbuchsen und Wellendichtungen müssen Temperaturgrenzen beachtet werden.

3.9 Heizmanteloptionen

S-Mäntel sind für die Verwendung mit Sattdampf oder mit ungefährlichen Medien ausgelegt. Sie werden mit zylindrischen Gewindeverbindungen nach ISO 228-I ausgestattet.

Höchsttemperatur: 180 °C Max. Druck: 10 bar

Material: Grauguss GG25

3.10 Innenteile

3.10.1 Lagerbuchsenwerkstoffe

Übersicht über Lagerbuchsenwerkstoffe und Anwendungsgebiete

Materialcode		S	С	В
Werkstoff	Stahl	Hartkohle	Bronze	
Hydrodynamische	wenn ja	bis zum maximale	en Betriebsdruck =	16 bar
Schmierung	wenn nein	6 bar (*)	10 bar (*)	6 bar (*)
Korrosionsbeständigkeit	Ausreichend	Gut	Ausreichend	
Abriebwiderstand	Geringfügig	Keine	Keine	
Trockenlauf zulässig		Nein	Ja	Mittelmäßig
Empf ndlich auf Temperaturs	chock	Nein	Nein	Nein
Empf ndlich gegen Blasenbil	Nein	>180 °C	Nein	
Ölalterung	Nein	Nein	>150 °C	
Verarbeitung von Lebensmitt	eln zulässig	Ja	Nein (Antimon)	Nein (Blei)

^(*) Dies sind keine absoluten Angaben. Es sind höhere oder niedrigere Werte möglich, entsprechend Anwendung, erwarteter Lebensdauer usw.

3.10.2 Maximale Temperatur der Innenbauteile

Da die zulässige Höchsttemperatur von TopGear BLOC-Pumpen bei 180 °C liegt, bestehen für die Innenteile keine zusätzlichen Temperaturbeschränkungen.

3.10.3 Betrieb unter hydrodynamischen Schmierbedingungen

Die hydrodynamische Schmierung kann ein wichtiges Kriterium für die Auswahl des Lagerbuchsenwerkstoffs sein. Wenn die Lagerbuchsen mit hydrodynamischer Schmierung betrieben werden, besteht kein Materialkontakt zwischen Buchse und Zapfen oder Welle, d. h. der Lebenszyklus verlängert sich erheblich. Fehlen die Voraussetzungen für hydrodynamische Schmierung, so haben die Gleitlager Kontakt mit dem Zapfen oder der Welle, und der Verschleiß dieser Teile ist zu überwachen.

Die Bedingung der hydrodynamischen Schmierung wird mit der folgenden Gleichung ermittelt:

$\textbf{Viskosit\"{a}t * Wellengeschwindigkeit/Diff.Druck} \geq \textbf{K.hyd}$

mit: Voskosität [mPa·s]

Wellendrehzahl U/min [rpm]

Diff.druck [bar]

K.hyd = Planungskonstante für jede Pumpengröße.

K.hyd
6250
4000
3750
3600

3.10.4 Max. Drehmoment der Pumpenwelle und Rotorwerkstoffkombination

Das höchstzulässige Drehmoment ist eine drehzahlunabhängige Konstante und darf nicht überschritten werden, um eine Beschädigung der Pumpe, d. h. der Pumpenwelle, der Rotor-/Wellenbefestigung und der Rotorzähne, zu vermeiden.

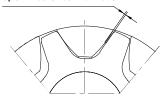
	Mn (Nenn	drehmoment) in Nm	Md (Anfahrdrehmoment) in Nm			
TG BLOC Pumpengröße	G Rotor Eisen			R Rotor Edelstahl		
15-50	255	255	360	360		
23-65	255	255	360	360		
58-80	390	390	550	550		
86-100	600	600	840	840		

Das Nenndrehmoment (Mn) ist auf die normalen Arbeitsbedingungen und das nominale Motordrehmoment (M n.motor) abzustimmen, aber auf die Pumpendrehzahl umzurechnen.

Das Anlaufdrehmoment (Md) darf beim Anlaufvorgang nicht überschritten werden. Dieser Wert ist maßgeblich für eine Drehmomentbegrenzung, wenn installiert.

3.11 Massenträgheitsmoment

TG BLOC	15-50	23-65	58-80	86-100
J (10 ⁻³ x kg·m ²)	3,5	6,8	32	54


3.12 Axial- und Radialspiel

TG BLOC	15-50	23-65	58-80	86-100
Minimum (μm)	70	75	100	115
Maximum (µm)	150	165	200	225

3.13 Spiel zwischen den Zahnrädern

TG BLOC	15-50	23-65	58-80	86-100
Minimum (µm)	360	400	400	400
Maximum (µm)	720	800	800	800

Spiel zwischen den Zahnrädern

3.14 Max. Größe der Feststoffpartikel

TG BLOC	15-50	23-65	58-80	86-100	
Größe (µm)	120	125	150	165	

3.15 Wellendichtung

Gleitringdichtung gemäß EN12756 (DIN24960) - Allgemeine Daten

In TopGear TG BLOC kann die kurze einfach wirkende Gleitringdichtung gemäß EN12756 (DIN24960) eingebaut werden. Die Gleitringdichtung wird gegen den Rotorabsatz gesetzt.

TG BLOC Pumpengröße	15-50 23-65	58-80 86-100		
Wellendurchmesser	40	45		
Kurze EN12756 (DIN 24960)	KU040	KU045		
L1K (kurze Welle)	45	45		

Abmessungen in mm

Leistung

Die maximale Leistung, wie Viskosität, Temperatur oder Betriebsdruck, hängt vom Fabrikat der Gleitringdichtung und den verwendeten Werkstoffen ab.

Die folgenden Grundwerte können berücksichtigt werden:

Höchsttemperaturen von Elastomeren

 Nitril (P):
 110 °C

 FPM (Fluorkohlenstoff):
 180 °C

 PTFE (massiv oder PTFE-ummantelt):
 220 °C

 Chemraz:
 230 °C

 Kalrez®*:
 250 °C

Maximale Viskosität

3000 mPas: Für einfach wirkende Gleitringdichtungen in Leichtbauweise

5000 mPas: Für einfach wirkende Gleitringdichtungen mittlerer Drehmomentbauweise

(Hersteller konsultieren).

7500 mPas: Für einfach wirkende Gleitringdichtungen mit hohem Drehmoment

(Hersteller konsultieren).

Die maximal zulässige Viskosität zwischen den Gleitf ächen der Gleitringdichtung hängt von der Art des Fördermediums (Newtonsches Fluid, Kunststoff usw.), der Gleitgeschwindigkeit der Gleitf ächen und der Konstruktion der Gleitringdichtung ab.

^{*} Kalrez® ist ein eingetragenes Warenzeichen von DuPont Performance Elastomers

3.16 Sicherheitsventil

Beispiel

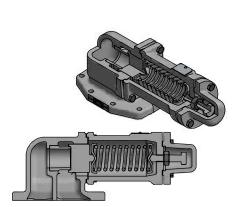
V 35 - G 10 H

1. Sicherheitsventil = V

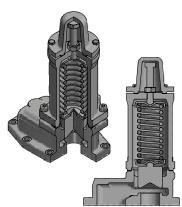
2. Typenbezeichnung = Einlassdurchmesser (in mm)

- 27 Sicherheitsventilgröße für TG BLOC15-50, TG BLOC23-65
- 35 Sicherheitsventilgröße für TG BLOC58-80
- 50 Sicherheitsventilgröße für TG BLOC86-100

3. Werkstoffe


- G Sicherheitsventil aus Grauguss
- R Sicherheitsventil aus Edelstahl
- * für Lebensmittelanwendungen: Es sollte ein Sicherheitsventil aus Edelstahl verwendet werden

4. Betriebsdruckstufen


- 4 Betriebsdruck 1-4 bar
- 6 Betriebsdruck 3-6 bar
- 10 Betriebsdruck 5-10 bar
- 16 Betriebsdruck 9-16 bar

5. Beheiztes Federgehäuse

H Sicherheitsventil mit beheiztem Federgehäuse

Sicherheitsventil - horizontal

Sicherheitsventil - vertikal

3.16.1 Druck

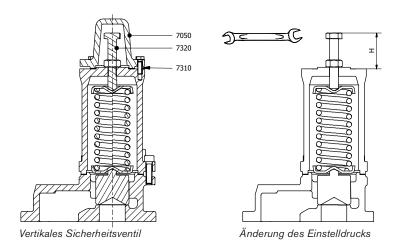
Sicherheitsventile sind in drei Betriebsdruckklassen unterteilt, d. h. 4, 6 und 10, die den maximalen Betriebsdruck für dieses Ventil kennzeichnen. Jede Klasse hat einen Standard-Ansprechdruck von 1 bar über dem angezeigten max. Betriebsdruck. Der Ansprechdruck kann bei Bedarf niedriger, jedoch niemals höher eingestellt werden.

Betriebsdruckklasse	4	6	10	16
Standard-Einstelldruck (bar)	5	7	11	17
Betriebsdruckbereich (bar)	1-4	3-6	5-10	9-16
Einstelldruckbereich (bar)	2-5	4-7	6-11	10-17

3.16.2 Heizung

Das aufgeschweißte Federgehäuse ist mit 2 Gewindeanschlüssen ausgestattet. Flanschanschlüsse stehen nicht zur Verfügung.

Höchsttemperatur: 200 °C Max. Druck: 10 bar


3.16.3 Sicherheitsventil - relative Einstellung

Das Ventil wird werkseitig auf den Standardeinstelldruck eingestellt.

Hinweis! Achten Sie bei der Prüfung des auf der Pumpe montierten Sicherheitsventils darauf, dass der Druck in der Pumpe nie höher ansteigt als der Einstelldruck des Sicherheitsventils zuzüglich 2 bar.

Zum Einstellen des Standard-Ansprechdrucks gehen Sie wie folgt vor:

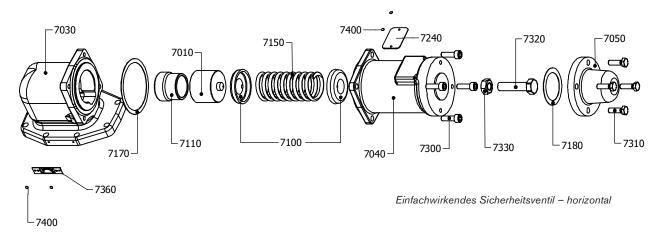
- 1. Schrauben (7310) lösen.
- 2. Deckel (7050) abnehmen.
- 3. Die Abmessungen von H ermitteln.
- 4. Den Federkennwert p/f aus der Tabelle auslesen und anhand dieses Wertes den Weg bestimmen, wie weit die Regelschraube (7320) hinein- oder herausgeschraubt werden muss.

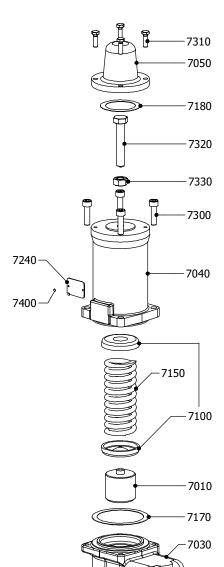
Federkennwert - Sicherheitsventil

					Feder	abmes	sungen	
TG BLOC Pumpengröße			Druckklasse	Du mm	d mm	Lo mm	p/f bar/mm	∆H [mm] für Einstellung um 1 bar
		ntal	4	37,0	4,5	93	0,21	4,76
15-50 23-65	V27	Horizon	6	37,0	4,5	93	0,21	4,76
		Hor	10	36,5	6,0	90	0,81	1,23
			4	49,0	7,0	124	0,32	3,13
58-80	V35	=	6	49,0	7,0	124	0,32	3,13
		Vertikal	10	48,6	8,0	124	0,66	1,52
		Ver	4	49,0	7,0	124	0,16	6,25
86-100	V50		6	48,6	8,0	124	0,33	3,03
			10	49,0	9,0	120	0,55	1,82

Beispiel: Stellen Sie den Standard-Einstelldruck eines V35-G10-Ventils (für die Pumpengröße 58-80) auf 8 bar ein.

- ⇒ Standarddruck eines V35-G10 = 11 bar (siehe Tabelle unter 3.17.1)
- Unterschied zwischen Istdruck und Solldruck = 11-8 = 3 bar
- ⇒ ∆H zur Lockerung der Regelschraube = 3×1,52 mm (siehe Tabelle oben) = 4,56 mm

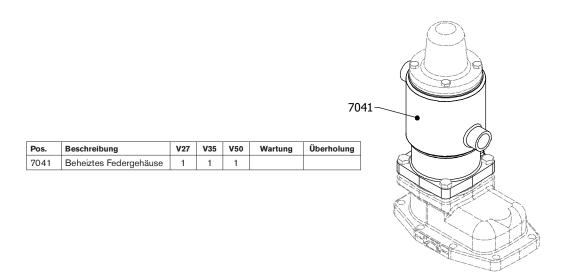

Hinweis!


Das Federverhältnis p/f richtet sich nach den Federabmessungen. Überprüfen Sie ggf. diese Abmessungen (siehe Tabelle oben).

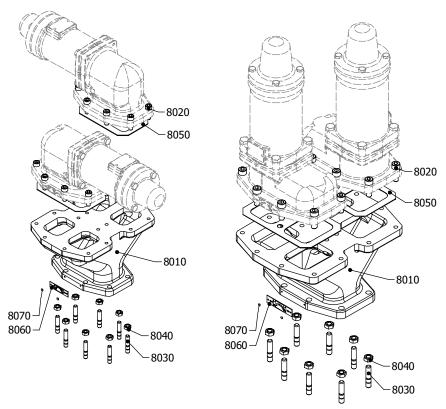
Funktioniert das Sicherheitsventil nicht einwandfrei, muss die Pumpe sofort außer Betrieb genommen werden. Lassen Sie das Sicherheitsventil von Ihrem Händler vor Ort überprüfen.

3.16.4 Explosionszeichnungen und Teilelisten

3.16.4.1 Einfachwirkendes Sicherheitsventil


Pos.	Beschreibung	V27	V35	V50	Wartung	Überholung
7010	Ventil	1	1	1		
7030	Ventilgehäuse	1	1	1		
7040	Federgehäuse	1	1	1		
7050	Deckel	1	1	1		
7100	Federplatte	2	2	2		
7110	Ventilsitz	1	1	1		
7150	Feder	1	1	1		
7170	Flachdichtung	1	1	1	х	х
7180	Flachdichtung	1	1	1	х	х
7240	Typenschild	1	1	1		
7300	Zylinderkopfschraube (Inbus)	4	4	4		
7310	Gewindeschraube	4	4	4		
7320	Justierschraube	1	1	1		
7330	Sechskantmutter	1	1	1		
7360	Pfeilschild	1	1	1		
7400	Niet	4	4	4		

Einfachwirkendes Sicherheitsventil - vertikal


7360

7400

3.16.4.2 Beheiztes Federgehäuse

3.16.4.3 Doppeltwirkendes Sicherheitsventil

 $Doppeltwirk endes\ Sicherheitsventil-horizontal$

Doppeltwirkendes Sicherheitsventil - vertikal

Pos.	Beschreibung	V27	V35	V50	Wartung	Überholung
8010	Y-Gehäuse	1	1	1		
8020	Zylinderkopfschraube (Inbus)	16	16	16		
8030	Bolzen	8	8	8		
8040	Sechskantmutter	8	8	8		
8050	Flachdichtung	3	3	3	х	х
8060	Pfeilschild	1	1	1		
8070	Niet	2	2	2		

3.17 Installation

3.17.1 Allgemein

Dieses Handbuch enthält grundlegende Anweisungen, die bei der Montage der Pumpe zu beachten sind. Es ist daher wichtig, dass die verantwortlichen Personen dieses Handbuch vor Beginn der Montagearbeiten aufmerksam durchlesen und es am Aufstellungsort aufbewahren.

Das Handbuch enthält nützliche und wichtige Informationen für die richtige Installation der Pumpe/des Pumpenaggregats. Daneben enthält es auch wichtige Ratschläge zur Vermeidung möglicher Unfälle und Schäden bei der Inbetriebnahme und während des Betriebes der Anlage.

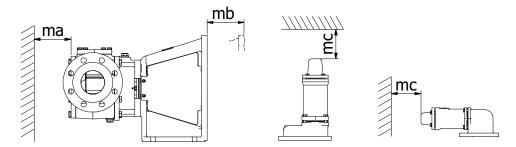
Die Nichteinhaltung der Sicherheitsanweisungen kann sowohl eine Gefährdung des Personals als auch der Maschine und der Umwelt zur Folge haben und führt zum Verlust jeglicher Gewährleistungsansprüche.

Es ist besonders wichtig, dass die an der Maschine angebrachten Symbole, z. B. Pfeile mit der Angabe der Drehrichtung oder Zeichen für die Strömungsrichtung, stets sichtbar und leserlich sind.

3.17.2 Aufstellungsort

3.17.2.1 Kurze Ansaugleitung

Aufstellung der Pumpe bzw. des Pumpenaggregats in der unmittelbaren Nähe des Flüssigkeitsbehälters, nach Möglichkeit unterhalb des Flüssigkeitsspiegels. Je besser die Zulaufbedingungen, desto besser ist die Förderleistung. Siehe auch Abschnitt 3.17.6.2 Rohrleitungen.


3.17.2.2 Zugänglichkeit

Rund um die Pumpe/das Pumpenaggregat muss ausreichend Platz für die Isolation sowie für Inspektion und Wartung vorhanden sein.

Zur Demontage des Pumpendeckels, des Ritzels und des Ritzelzapfens muss genügend Raum vor der Pumpe vorhanden sein.

- Zum Lösen des Pumpendeckels beachten Sie ma
- Zum Ausbau rotierender Teile (Pumpenwelle und Dichtung) siehe mb
- Zur Einstellung des Sicherheitsventildrucks beachten Sie mc

Die Werte von ma, mb, mc können Sie Kapitel 6.0 entnehmen.

Alle Einstellmöglichkeiten des Pumpenaggregates müssen (auch während des Betriebes) stets zugänglich bleiben.

3.17.2.3 Installation im Freien

Pumpen der Baureihe TG BLOC dürfen im Freien aufgestellt werden. Die Kugellager sind gegen Tropfwasser geschützt. Bei sehr feuchten Bedingungen empfehlen wir eine Schutzhaube.

3.17.2.4 Installation in Innenräumen

Die Pumpe ist so aufzustellen, dass die Kühlung des Motors gewährleistet ist. Der Motor ist nach den Angaben des Motorherstellers für den Betrieb vorzubereiten.

Werden entzündliche oder explosive Flüssigkeiten gefördert, muss eine zuverlässige Erdung vorgesehen sein. Alle Teile des Aggregates sind mit Erdungsbrücken untereinander zu verbinden, um eine Gefährdung durch statische Auf adung zu verhindern.

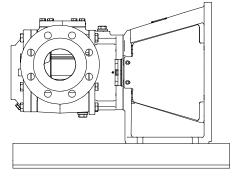
Entsprechend den örtlichen Vorschriften müssen explosionssichere bzw. explosionsgeschützte Motoren verwendet werden. Es sind geeignete Kupplungen mit Schutzabdeckungen vorzusehen.

Erhöhte Temperaturen

Je nach Fördereinsatz können hohe Temperaturen innerhalb und außerhalb der Pumpe auftreten. Überschreitet die Betriebstemperatur 60 °C, so muss der Verantwortliche die Anbringung von Abdeckungen mit dem Hinweis "Heiße Oberf ächen" veranlassen.

Wird das Pumpenaggregat gegen Wärmeverluste isoliert, muss eine ausreichende Kühlung der Lagergehäuse vorgesehen werden. Dies ist für die Kühlung der Lager erforderlich.

Personen müssen sowohl gegen austretende Leckagef üssigkeiten als auch gegen mögliche größere Flüssigkeitsverluste geschützt werden.


3.17.2.5 Stabilität

Fundament

Das Pumpenaggregat muss auf einer Grundplatte oder einem Rahmen absolut eben auf dem Fundament aufgestellt werden. Die Grundplatte muss hart, eben und waagerecht ausgerichtet sowie schwingungsfrei sein, damit die korrekte Ausrichtung der Pumpe/des Pumpenaggregats während des Betriebs gewährleistet bleibt. Siehe auch Abschnitt 3.17.9 Richtlinien für den Zusammenbau.

Horizontale Montage

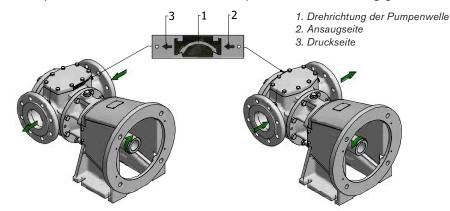
Die Pumpen sind horizontal auf der Grundplatte zu montieren. Andere Arten der Aufstellung beeinf ussen das Ablassen, Füllen und die Funktion der Wellenabdichtung usw. Soll die Pumpe/das Pumpenaggregat nicht horizontal aufgestellt werden, fragen Sie bei Ihrem Händler vor Ort nach.

3.17.3 Antriebe

Wird eine Pumpe mit einem freien Wellenende geliefert, so ist der Betreiber für den Antrieb und die Montage der Pumpe verantwortlich. Siehe dazu Abschnitt 3.17.9 Richtlinien für den Zusammenbau.

3.17.3.1 Anlaufmoment

- Das Anlaufmoment der innenverzahnten Verdrängerpumpen ist annähernd gleich dem Nenndrehmoment.
- Der Motor benötigt stets ein ausreichend großes Anlaufmoment. Wählen Sie daher einen Motor, dessen Kapazität den Stromverbrauch der Pumpe um 25 % übersteigt.

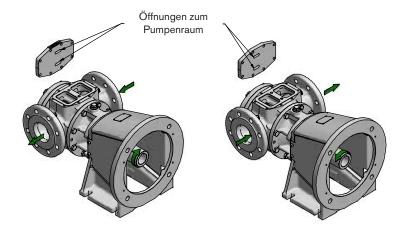

Hinweis! Ein mechanischer Antrieb mit variabler Drehzahl erfordert die Überprüfung des verfügbaren Drehmoments bei niedriger und hoher Drehzahl.

- Die Anlaufmomente können durch Frequenzumrichter begrenzt worden sein.
- Auch ist zu überprüfen, ob das maximal zulässige Drehmoment an der Pumpenwelle nicht überschritten wird (siehe Abschnitt 3.10.4). In Ausnahmefällen kann eine Begrenzung des Drehmomentes über eine elastische Ausrückkupplung oder eine Trennkupplung vorgesehen werden.

3.17.4 Wellendrehung bei Pumpe ohne Sicherheitsventil

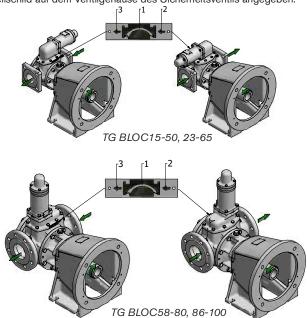
Aus der Wellendrehrichtung ergibt sich, welcher Pumpenanschluss für das Ansaugen und welcher für den Auslass ist.

Das Verhältnis zwischen der Wellendrehrichtung und der Seite des Ansaugens/Auslasses wird durch das Rotationspfeilschild auf dem oberen Deckel einer Pumpe ohne Sicherheitsventil angegeben.



Hinweis! Die Wellendrehung wird immer vom Wellenende aus zur Pumpe betrachtet. Sofern bei der Bestellung nicht anders angegeben, werden TopGear-Pumpen werkseitig für den Drehsinn Rechtslauf gebaut (linke Abbildung oben), die wir als Standarddrehrichtung def nieren.

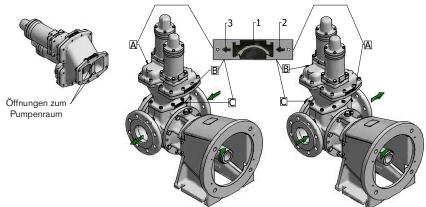
Die kleinen Pfeile 2 und 3 zeigen die Fließrichtung der gepumpten Fördermedium an. Stellen Sie stets sicher, dass die Wellendrehrichtung der Position des Auslasses und des Ansauganschlusses und der durch das Rotationspfeilschild angezeigten Richtung entspricht.


Wenn die Wellenrotation hinsichtlich der Anschlussposition korrekt ist, aber nicht der durch das Rotationspfeilschild angezeigten Richtung entspricht, muss der obere Deckel abgenommen und um 180° gedreht werden. Zwei Öffnungen zum Pumpenraum dienen dem Ablassen von Luft oder Gasen während des Anschaltens oder Betriebs. Da sie nur in einer Rotationsrichtung funktionieren, sollte der obere Deckel so positioniert werden, dass die Öffnungen zum Pumpenraum in Richtung der Ansaugseite ausgerichtet sind. Wenden Sie sich im Zweifelsfall an Ihren Vertriebspartner vor Ort. Rotiert die Pumpe in beide Richtungen, sollte der obere Deckel so positioniert werden, dass die Öffnungen zum Pumpenraum in Richtung der am häuf gsten verwendeten Ansaugseite ausgerichtet sind.

3.17.5 Wellendrehung bei Pumpe mit Sicherheitsventil

Aus der Wellendrehrichtung ergibt sich, welcher Pumpenanschluss für das Ansaugen und welcher für den Auslass ist.

Das Verhältnis zwischen der Wellenrotation und der Seite des Ansaugens/Auslasses wird durch das Rotationspfeilschild auf dem Ventilgehäuse des Sicherheitsventils angegeben.


Hinweis! Die Wellendrehung wird immer vom Wellenende aus zur Pumpe betrachtet. Sofern bei der Bestellung nicht anders angegeben, werden TopGear-Pumpen werkseitig für den Drehsinn Rechtslauf gebaut (linke Abbildung oben), die wir als Standarddrehrichtung def nieren.

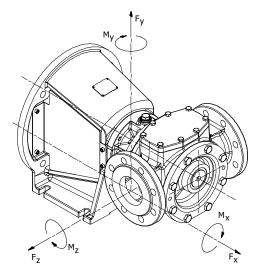
Die kleinen Pfeile 2 und 3 zeigen die Fließrichtung der gepumpten Fördermedium an. Stellen Sie stets sicher, dass die Wellendrehrichtung der Position des Auslasses und des Ansauganschlusses und der durch das Rotationspfeilschild angezeigten Richtung entspricht.

Wenn die Wellendrehrichtung hinsichtlich der Anschlussposition korrekt ist, aber nicht der durch das Rotationspfeilschild angezeigten Richtung entspricht, muss das Sicherheitsventil ausgebaut und um 180° gedreht wieder eingebaut werden.

Wenn sich die Pumpe in beide Richtungen dreht, ist ein doppeltwirkendes Sicherheitsventil erforderlich.

Wenn ein doppeltwirkendes Sicherheitsventil installiert ist, werden drei Pfeilschilder angebracht – je eines auf jedem Ventil (A und B), das die Strömungsrichtung jedes Ventils anzeigt (kleine Pfeile 2 und 3), und eines auf dem Y-Gehäuse (C), das die bevorzugte Drehrichtung der Pumpe anzeigt (Pfeil 1).

Zwei Öffnungen zum Pumpenraum dienen dem Ablassen von Luft oder Gasen während des Anschaltens oder Betriebs. Da sie nur in einer Rotationsrichtung funktionieren, sollte das Y-Gehäuse so positioniert werden, dass die Öffnungen zum Pumpenraum in Richtung der am häuf gsten verwendeten Ansaugseite ausgerichtet sind. Wenden Sie sich im Zweifelsfall an Ihren Vertriebspartner vor Ort.


Stellen Sie sicher, dass die Sicherheitsventile einander gegenüberliegend montiert sind, so dass die Pfeilschilder auf den Sicherheitsventilen (A und B) entgegengesetzte Strömungsrichtungen anzeigen.

3.17.6 Saug- und Druckleitungen

3.17.6.1 Kräfte und Momente

Hinweis! Von den Leitungen herrührende übermäßige Kräfte und Momente an den Flanschen können mechanische Schäden an der Pumpe oder dem Pumpenaggregat verursachen.

Zur Verminderung der Kräfte an den Pumpenanschlüssen sollten die Leitungen gerade verbunden werden. Daher müssen die Leitungen abgestützt und während des Pumpenbetriebs frei von Verspannungen sein.

TG BLOC Pumpengröße	F _{x, y, z} (N)	M _{x, y, z} (Nm)
15-50	2600	675
23-65	2900	800
58-80	3550	1375
86-100	4100	1750

Die höchstzulässigen Kräfte $(F_{x,y,z})$ und Momente $(M_{x,y,z})$ auf die Düsenf ansche an den Flanschen einer Pumpe auf einem festen Untergrund (z. B. gegossene Fundamentplatte oder solider Rahmen) f nden Sie in der Tabelle.

Beim Fördern heißer Flüssigkeiten müssen die von der Wärmedehnung verursachten Kräfte und Momente beachtet werden. In diesem Falle sind Kompensatoren einzubauen.

Nach der Verbindung der Anschlüsse ist der freie Lauf der Welle zu prüfen.

3.17.6.2 Rohrleitungen

- Es sind Leitungen mit einem gleichen Querschnitt wie die Pumpenanschlüsse und von möglichst kurzer Länge zu verwenden.
- Der Querschnitt der Leitungen wird gemäß den Daten der Flüssigkeiten und der Installationsparameter berechnet. Gegebenenfalls sind größere Querschnitte zu verwenden, um Druckverluste einzuschränken.
- Werden viskose Flüssigkeiten gefördert, so können sich die Druckverluste in den Ansaug- und Druckleitungen beträchtlich vergrößern. Weitere Leitungsbauteile, wie Ventile, Krümmer, Siebe, Filter oder Fußventile, verursachen zusätzliche Druckverluste.
- Durchmesser und Länge der Leitungen und die sonstigen Teile sind so zu wählen, dass der Pumpenbetrieb keine Schäden an der Pumpe oder dem Pumpenaggregat verursacht. Dabei ist der kleinste mögliche Ansaugdruck, der höchste Betriebsdruck, die Leistung und das Drehmoment des eingebauten Motors zu Grunde zu legen.
- Nach dem Anschluss ist die Dichtigkeit der Verbindungen zu pr
 üfen.

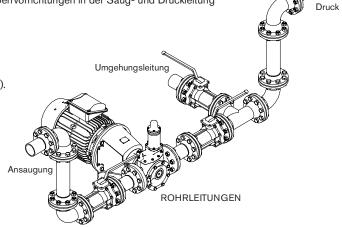
Ansaugleitungen

- Flüssigkeiten sollen in der Regel der Pumpe aus einer Höhe zulaufen, die über dem Pumpenniveau liegt. Beim Ansaugen der Flüssigkeit aus einem tieferliegenden Niveau müssen die Zulauf eitungen in Richtung der Pumpe und ohne Lufttaschen aufsteigen.
- Bei einem zu kleinen Querschnitt, einer zu langen Ansaugleitung, einem zu kleinen oder verstopften Filter erhöhen sich die Druckverluste, d. h. der NPSHa (verfügbarer NPSH) unterschreitet den NPSH (notwendiger NPSH).
 - Es kommt zu Kavitation, die Geräusche und Erschütterungen verursacht. Dadurch können an Pumpe und Pumpenaggregat Schäden entstehen.
- Bei Einbau eines Ansaugsiebs oder -f Iters ist der Druckverlust in der Ansaugleitung permanent zu überprüfen. Zusätzlich ist zu prüfen, ob der Zulaufdruck am Saugfansch ausreichend hoch ist.
- Läuft die Pumpe in beiden Richtungen, so sind die Druckverluste für beide Seiten zu errechnen.

Selbstansaugender Betrieb

Beim Anlauf muss ausreichend Flüssigkeit vorhanden sein, damit der innere Hohlraum und die Toträume der Pumpe gefüllt werden können und die Pumpe einen Differenzdruck aufbauen kann.

Beim Pumpen niedrigviskoser Flüssigkeiten ist daher ein Fußventil mit dem Querschnitt der Ansaugleitung oder größer einzubauen. Alternativ kann die Pumpe ohne Fußventil, jedoch in eine U-förmig geführte Leitung eingebaut werden.


Hinweis! Werden hochviskose Flüssigkeiten gefördert, ist ein Fußventil nicht zu empfehlen.

- Um Luft und Gase aus der Pumpe und der Saugleitung zu entlüften, ist der Gegendruck auf der Auslassseite zu verringern. Bei Selbstansaugbetrieb muss die Pumpe mit einer offenen, leeren Druckleitung hochgefahren werden, damit Luft und Gase ohne Gegendruck entweichen können.
- Im Falle langer Leitungen oder bei Einbau eines Rückschlagventils in der Druckleitung soll ein Entlüftungsventil mit Bypass nahe der Druckseite der Pumpe eingebaut werden. Dieser Hahn wird bei dem Anlauf geöffnet, er ermöglicht das Entweichen von Gasen oder Luft bei niedrigem Gegendruck. Der Bypass soll zurück in den Vorratstank führen – nicht zum Sauganschluss der Pumpe.

3.17.6.3 Absperrventile

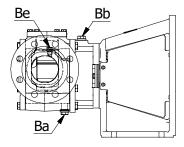
Für eine gewissenhafte Wartung ist es erforderlich, die Pumpe von den Leitungen zu trennen. Die Trennung kann durch den Einbau von Absperrvorrichtungen in der Saug- und Druckleitung erreicht werden.

- Diese Ventile müssen eine kreisrunde Durchströmung (volle Öffnung) mit dem gleichen Querschnitt wie die Leitungen haben.
 (Vorzugsweise Absperr- oder Kugelventile).
- Bei Pumpenbetrieb müssen die Ventile vollständig geöffnet sein. Die Leistung darf nicht durch das Androsseln der Absperrvorrichtungen in der Saugoder Druckleitung reguliert werden, sondern durch die Änderungen der Drehzahl oder Umleitung des Fördermediums über einen Bypass zurück zum Vorratstank.

3.17.6.4 Filter

Fremdpartikel können die Pumpe erheblich beschädigen. Der Einbau eines Filters/Abscheiders verhindert das Eintreten solcher Partikel.

- Bei Auswahl des Filters ist auf die Größe der Öffnungen zu achten, um Druckverlust zu verringern.
 Der Querschnitt des Filters entspricht der dreifachen Größe der Ansaugleitung.
- Der Einbau des Schmutzfängers muss so erfolgen, dass Wartung und Reinigung möglich sind.
- Achten Sie darauf, dass der Druckabfall im Filter mit der richtigen Viskosität berechnet wird.
 Erwärmen Sie den Filter gegebenenfalls, um die Viskosität und den Druckabfall zu verringern.

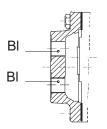

Hinweise zur maximal zulässigen Partikelgröße können Sie Abschnitt 3.14 entnehmen.

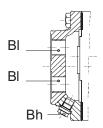
3.17.7 Hilfsleitungen

Abmessungen der Anschlüsse und der Stopfen siehe Kapitel 6.0.

3.17.7.1 Ablaufieitungen

Die Pumpe ist mit Ablassstopfen versehen.


3.17.7.2 Heizmäntel


1. S-Mäntel

Die S-Version ist für Sattdampf (max. 10 bar, 180 °C) oder ungefährliche Flüssigkeiten ausgelegt. Es sind Gewindeanschlüsse BI vorgesehen (siehe Kapitel 6.0 bezüglich der Abmessungen).

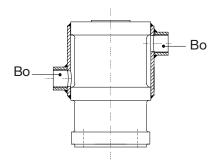
Die Abdichtung kann im Gewinde (konisches Gewinde gemäß ISO 7/1) oder außerhalb des Gewindes mit ebenen Dichtungseinlagen (zylindrische Gewinde entsprechend ISO 228/1) erfolgen. Gewindetyp siehe Abschnitt 3.20.7.

S-Mantel auf Pumpendeckel

TG BLOC15-50/23-65

TG BLOC58-80/86-100

2. Mantel am Pumpendeckel

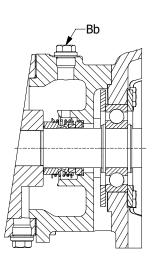

Falls Dampf eingesetzt wird, ist der Zulauf am oberen und der Rücklauf an dem unteren Anschluss anzuschließen, damit das Kondensat über die unterste Leitung abläuft. Bei Zuleitung von Flüssigkeit sind die Positionen unerheblich. Ein Ablaufstopfen Bh wird mitgeliefert und kann als Ablauf eitung verwendet werden (in der Grauguss-Ausführung ist Bh nur in den Modellen TG BLOC58-80 und TG BLOC86-100 vorgesehen).

3. Mantel am Sicherheitsventil – um das Federgehäuse

Die Mäntel für das Sicherheitsventil sind für Verwendung von Sattdampf (max. 10 bar, 180 °C) oder ungefährliche Flüssigkeiten ausgelegt. Sie sind mit Gewindeanschlüssen Bo versehen (Abmessungen siehe Kapitel 6.0).

Der Anschluss erfolgt mit Gewindeanschlüssen oder Leitungsanschlüssen mit Dichtungen im Gewinde (konische Gewinde nach ISO 7/1). Gewindetyp siehe Abschnitt 3.20.7.

Falls Dampf eingesetzt wird, ist der Zulauf am oberen und der Rücklauf an dem unteren Anschluss anzuschließen, damit das Kondensat über die unterste Leitung abläuft. Bei Flüssigkeitsversorgung sind die Positionen unerheblich.


3.17.8 Spülmedien

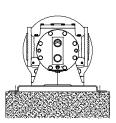
Die TopGear BLOC-Pumpen verfügen über eine Spülkammer rund um die Gleitringdichtung mit Gewindeanschlüssen Bb oben. Die Kammer kann an eine oberhalb des Pumpenniveaus installierte Tankversorgung oder an eine externe Spülversorgungsleitung mit niedrigem Druck (max. Druck 0,5 bar) angeschlossen werden.

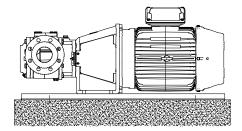
Zu beachten ist die Verträglichkeit des Spülmediums gegenüber

- Nitril-Kautschuk mit Radial-Lippenring.
- Kugellagerfett, weil Medium in sehr geringen Mengen zum Kugellager hin austreten könnte.

Verwenden Sie z. B. sauberes Schmieröl ISO VG32.

3.17.9 Richtlinien für den Zusammenbau


Wenn eine Pumpe mit freiem Wellenende geliefert wird, übernimmt der Benutzer die Montage mit dem Antrieb. Daneben muss der Benutzer alle notwendigen Geräte und Vorrichtungen für die sichere Installation und Inbetriebnahme der Pumpe stellen.


3.17.9.1 Transport des Pumpenaggregats

- Vor dem Anheben und Transport eines Pumpenaggregats ist sicherzustellen, dass die Verpackung ausreichend robust ist und während des Transports nicht beschädigt werden kann.
- Verwenden Sie zum Anheben des Pumpenaggregats Kranhaken (siehe Kapitel 1.0).

3.17.9.2 Fundament des Pumpenaggregats

Das Pumpenaggregat muss auf einer Grundplatte oder einem Rahmen absolut eben auf dem Fundament aufgestellt werden. Der Sockel muss hart, eben, waagerecht ausgerichtet und schwingungsfrei sein, um die genaue Fluchtung von Pumpe und Antrieb des Pumpenaggregates während des Betriebes sicherzustellen (siehe Abschnitt 3.17.2.5).

3.17.9.3 Verstellgetriebe, Motoren

Ziehen Sie das beiliegende Betriebshandbuch heran. Sollte es nicht beiliegen, setzten Sie sich mit dem Pumpenhersteller in Verbindung.

3.17.9.4 Elektromotorantrieb

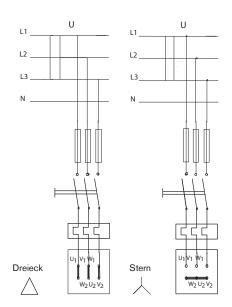
- Vor Anschluss des Elektromotors an das Stromnetz sind die geltenden Vorschriften des Stromlieferanten sowie die Norm DIN (EN) 60204-1 heranzuziehen.
- Elektromotoren dürfen nur von Fachpersonal angeschlossen werden. Es sind die erforderlichen Maßnahmen zu ergreifen, um Schäden an elektrischen Anschlüssen und Kabeln zu vermeiden.

Trennschalter

Für die sichere Arbeit am Pumpenaggregat ist so nahe wie möglich an der Pumpe ein Trennschalter anzubringen. Es wird empfohlen, einen Schutzschalter anzubringen. Die Schalteinrichtungen müssen den geltenden Bestimmungen der EN 60204-1 entsprechen.

Motorüberlastschutz

Als Schutz des Motors gegen Überlast und Kurzschluss ist ein Wärme- oder Wärme-Magnettrennschalter vorzusehen. Der Schalter ist für den normalen Stromverbrauch des Motors einzustellen.


Anschluss

- Für Elektromotoren darf aufgrund des notwendigen hohen Anfahrdrehmoments kein Stern-Dreieck-Kreislauf verwendet werden.
- Bei Einphasen-Wechselstrom verwenden Sie Motoren mit "erhöhtem" Anfahrdrehmoment.
- Es ist ein ausreichend hohes Anfahrdrehmoment für frequenzgesteuerte Motoren und die ausreichende Kühlung des Motors bei geringen Drehzahlen vorzusehen. Installieren Sie den Motor gegebenenfalls mit Zwangsbelüftung.

Elektrische Anlagen, Schalteinrichtungen und Teile der Steuerungssysteme können auch bei Stillstand unter Spannung stehen. Eine Berührung kann lebensgefährlich sein, sie kann schwere Personenschäden und irreparable Materialschäden verursachen.

Leitung	Motor	
U (Volt)	230/400 V	400 V
3 x 230 V	Dreieck	_
3 x 400 V	Stern	Dreieck

3.18 Anleitungen für das Anfahren

3.18.1 Allgemein

Nachdem alle Vorbereitungen gemäß Kapitel 3.17 Installation ausgeführt sind, kann mit dem Anfahren der Pumpe begonnen werden.

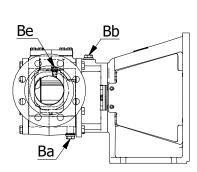
- Vor der Inbetriebnahme müssen die zuständigen Bediener/innen umfassend über den korrekten Betrieb der Pumpe/des Pumpenaggregats und die Sicherheitsanweisungen informiert werden. Das Personal muss auf dieses Betriebshandbuch stets zugreifen können.
- Vor der Inbetriebnahme ist die Pumpe bzw. das Pumpenaggregat stets auf sichtbare Schäden zu überprüfen. Beschädigungen oder Veränderungen müssen dem/der für diese Anlage Verantwortlichen sofort gemeldet werden.

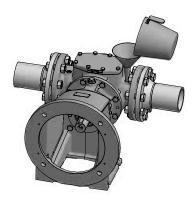
3.18.2 Reinigung der Pumpe

In der Pumpe sind nach dem Probelauf möglicherweise Reste von Öl vorhanden, darüber hinaus sind die Gleitlager mit Schmierstoff versehen. Vorhandene Schmier- und Konservierungsmittelreste können das Fördermedium beeinträchtigen. Aus diesem Grund ist die Pumpe gründlich zu reinigen. Die Vorgehensweise ist in Abschnitt 3.20.2.8 Ablassen des Fördermediums beschrieben.

Anmerkung: Pumpen für Lebensmittelanwendungen werden mit einem lebensmittelechten Öl geschützt.

Das verwendete Öl ist ein nach NSF H3 zugelassenes Öl (löslich). Obwohl das Öl nach NSF H3 zugelassen ist, sollte die Pumpe vor der ersten Inbetriebnahme gründlich gereinigt werden.


3.18.2.1 Reinigung der Saugleitung


Vor der ersten Inbetriebnahme der TG BLOC-Pumpe muss die Saugleitung gründlich gereinigt werden. Zum Spülen nicht die Pumpe verwenden. Die TG BLOC-Pumpe ist nicht auf die Beförderung von verunreinigten Flüssigkeiten mit niedriger Viskosität ausgelegt.

3.18.3 Entlüften und Auffüllen der Pumpe

Um optimal funktionieren zu können, muss die Pumpe vor jeder Inbetriebnahme sorgfältig entlüftet und mit dem Fördermedium gefüllt werden:

- Schrauben Sie die Füllstopfen Bb und Be heraus. Füllen Sie die Pumpe mit dem Fördermedium.
 Gleichzeitig wird die Pumpe entlüftet.
- Schrauben Sie die Füllstopfen wieder fest.
- Wenn die TG BLOC-Pumpe zum ersten Mal verwendet wird oder wenn neue Dichtungen angebracht wurden, müssen die Schrauben, welche die Dichtringe zusammenpressen, nach 3-4 Tagen nachgezogen werden (Hinweise zu Anzugsmomenten siehe Abschnitt 3.20.3.1).

Befüllen der Pumpe

3.18.4 Checkliste - Erstinbetriebnahme

Bei einer Neuinstallation oder nach einer gründlichen Wartung der Pumpe ist gemäß nachstehender Checkliste vorzugehen:

Ansaug- und Druckleitung
Die Ansaug- und Druckleitungen sind gereinigt.
Die Ansaug- und Druckleitungen wurden auf Undichtigkeiten überprüft.
Die Ansaugleitung ist ausreichend gegen das Eindringen von Fremdkörpern geschützt.
Eigenschaften
Die Eigenschaften des Pumpenaggregats und des Sicherheitsventils müssen überprüft werden (Pumpentyp – siehe Typenschild, U/min, Betriebsdruck, Stromleistung, Betriebstemperatur, Drehrichtung, NPSHr usw.).
Elektroinstallation
☐ Elektroinstallation gemäß den geltenden Vorschriften.
Die Motorspannung entspricht der Netzspannung. Überprüfen Sie den Klemmenblock.
Das Anfahrdrehmoment muss ausreichend hoch sein (kein Stern-Dreieck-Start).
Der Motorschutz ist korrekt eingerichtet.
☐ Die Drehrichtung des Motors entspricht der Richtung der Pumpenrotation.
Die Motordrehung (vom Aggregat übernommen) wurde überprüft.
Sicherheitsventil
Das Sicherheitsventil ist (an der Pumpe oder in den Leitungen) installiert.
Das Sicherheitsventil ist richtig angebracht. Die Durchf ussrichtung des Sicherheitsventils entspricht den Ansaug- und Druckleitungen.
Bei Funktionsweise für beide Laufrichtungen muss ein doppeltwirkendes Sicherheitsventil eingebaut sein.
Der Einstelldruck des Sicherheitsventils wurde überprüft (siehe Typenschild).
Mäntel
Die Mäntel sind installiert.
Der max. Druck und die Temperatur der Heiz-/Kühlmedien wurden überprüft.
Das entsprechende Heizmedium oder Kühlmittel wurde installiert und angeschlossen.
Die Installation entspricht den Sicherheitsnormen.
Wellendichtung
☐ Druck, Temperatur, Eignung und Anschlüsse des Spül- oder Quenchmediums wurde kontrolliert.
Schutz
Alle Schutz- und Sicherheitsvorrichtungen (Kupplung, drehende Teile, Temperaturüberschreitung) sind
angebracht und betriebsbereit.
Falls die Arbeitstemperatur der Pumpe 60 °C erreicht oder übersteigt: Kontrollieren, ob Schutzeinrichtungen gegen unbeabsichtigte Berührung angebracht sind.

3.18.5	Anfahren
	Bei der Erstinbetriebnahme der Pumpe ist die Vorgehensweise nach folgender Checkliste einzuhalten:
	 □ Die Pumpe ist mit Flüssigkeit gefüllt. □ Die Pumpe ist ausreichend vorgewärmt. □ Die Ansaug- und Druckventile sind vollständig geöffnet. □ Starten Sie die Pumpe kurz und überprüfen Sie die Drehrichtung des Motors. □ Starten Sie die Pumpe und überprüfen Sie die Ansaugung des Fördermediums (Ansaugdruck). □ Die U/min der Pumpe überprüfen. □ Druckleitung und Dichtung auf Undichtigkeiten überprüfen. □ Die Pumpe auf korrektes Funktionieren überprüfen.
3.18.6	Abschalten Wenn die Pumpe abgeschaltet wird, ist das folgende Verfahren einzuhalten:
	 Schalten Sie den Motor ab. Alle Hilfskreisläufe absperren (Heiz- bzw. Kühlmittel-Kreislauf, Spül- bzw. Sperrdrucksystem). Besteht die Möglichkeit, dass sich das Fördermedium beim Erkalten verfestigt, muss die Pumpe gereinigt werden, solange das Produkt noch f üssig ist.
	Siehe auch Abschnitt 3.20 Wartungsanleitungen.
	Hinweis! Wenn die Flüssigkeit aus der Druckleitung zurück in die Pumpe f ießt, kann die Pumpe in die Gegenrichtung drehen. Ein Absperren der Druckleitung während der letzten Pumpenumdrehungen kann dies verhindern.
3.18.7	Betriebsstörungen Hinweis! Bei jeglichen Betriebsstörungen muss die Pumpe sofort abgeschaltet werden. Informieren Sie die zuständigen Mitarbeiter.
	Ermitteln Sie die Fehlerursache und beheben Sie den Fehler, bevor Sie die Pumpe wieder in Betrieb nehmen.

3.19 Fehlerbehebung

Symptom	Ursache	Abh	ilfe	maßnahme
Kein Durchf uss	Saughöhe zu hoch	1		Entfernung zwischen Pumpe und
Die Pumpe saugt				Ansaugtankfüllstand verringern.
nicht an			-	Querschnitt der Ansaugleitung erhöhen.
				Länge reduzieren und die Ansaugleitung verringern
				(so wenig Krümmer und Fittings wie möglich
				verwenden).
				Siehe auch Abschnitt 3.17 Installation.
	Luftleck in Ansaugleitung	2	-	Undichtigkeit beheben.
	Sehr geringe Viskosität	3	-	Pumpendrehzahl erhöhen, Axialspiel verringern
				(siehe Abschnitt 3.20 Wartungsanleitungen).
	Ansaugf Iter oder Filter verstopft	4		Ansaugf Iter oder Filter schließen.
	Pumpengehäuse nach der Reparatur	5	-	Pumpengehäuse korrekt installieren.
	falsch installiert			Siehe Abschnitt 3.17 Installation.
	Falsche Drehrichtung des Motors	6	١.	Bei 3-Phasen-Antrieben zwei Anschlüsse ändern.
	l alsone Dreimontarig des Motors	0		Ansaug- und Drucköffnung wechseln.
			-	(Achtung! Beachten Sie die Position
				des Sicherheitsventils).
D stalet adam	Des Füllstand im Angewetent		1_	,
	Der Füllstand im Ansaugtank	7	•	Flüssigkeitszufuhr korrigieren.
Kein Durchf uss Die Pumpe saugt	ist zu niedrig		•	Sehen Sie einen Füllstandschalter vor.
Duloili uoo	Zu hohe Fördermenge	8	-	Pumpendrehzahl reduzieren/kleinere
				Pumpe installieren.
			•	Umgehungsleitung mit Rückschlagventil installieren
	Luftansaugung	9	-	Undichtigkeit in der Ansaugleitung beheben.
				Wellenabdichtung kontrollieren
				und gegebenenfalls ersetzen.
				Quenchf üssigkeit der Wellenabdichtung
				prüfen und erforderlichenfalls ergänzen.
				Verbindung von Stopfen Bb zum Stopfbuchsraum
				herstellen, um den Druck der Dichtung zu erhöhen.
	Kavitation	10		Entfernung zwischen Pumpe und
	Tarrano.			Ansaugtankfüllstand verringern.
				Querschnitt der Ansaugleitung erhöhen.
			-	Länge reduzieren und die Ansaugleitung
			-	verringern (so wenig Krümmer und Fittings
				wie möglich verwenden).
				Siehe auch Kapitel 3.17 Installation.
	Die Flüssigkeit verdampft in der Pumpe	11		Temperatur überprüfen.
	(z. B. durch Erwärmung)			Dampfdruck des Fördermediums überprüfen.
	(ar ar arman g)		+	
			•	Pumpendrehzahl verringern. Installieren Sie
	B	4.0		gegebenenfalls eine größere Pumpe.
-	Pumpendrehzahl zu gering	12	•	Pumpendrehzahl erhöhen. Achtung! Max. Drehzah
Fordermenge			-	nicht überschreiten, NPSHr überprüfen.
	Luftansaugung	13	•	Undichtigkeit in der Ansaugleitung beheben.
			•	Wellenabdichtung kontrollieren und gegebenenfalls
				ersetzen.
			-	Quenchf üssigkeit der Wellenabdichtung
				prüfen/ anlegen.
			-	Verbindung von Stopfen Bb zum Stopfbuchsraum
				herstellen, um den Druck der Dichtung zu erhöhen.
	Kavitation	14	-	Entfernung zwischen Pumpe und
				Ansaugtankfüllstand verringern.
				Querschnitt der Ansaugleitung erhöhen.
	I.			Länge reduzieren und die Ansaugleitung
				verringern (so wenig Krümmer und Fittings
			1	
				wie möglich verwenden).
				wie möglich verwenden). Siehe auch Abschnitt 3.17 Installation.
	Gegendruck zu hoch	15		Siehe auch Abschnitt 3.17 Installation.
	Gegendruck zu hoch	15	-	Siehe auch Abschnitt 3.17 Installation. Druckleitung überprüfen.
	Gegendruck zu hoch	15		Siehe auch Abschnitt 3.17 Installation. Druckleitung überprüfen. Rohrquerschnitt erhöhen.
	Gegendruck zu hoch	15	•	Siehe auch Abschnitt 3.17 Installation. Druckleitung überprüfen.

Symptom	Ursache	Abh	ilfe	maßnahme
Zu wenig Fördermenge	Viskosität zu niedrig	17	-	Pumpendrehzahl erhöhen. <i>Achtung!</i> Max. Drehzahl nicht überschreiten, NPSHr überprüfen.
			•	Installieren Sie gegebenenfalls eine größere Pumpe.
			•	Wenn die Pumpe mit Heizmänteln oder elektrischer
				Beheizung geheizt wird, regeln Sie diese herunter.
	Axialspiel	18	•	Axialspiel überprüfen und korrigieren. Siehe Abschnitt 3.20 Wartungsanleitungen.
	Gase werden freigesetzt	19	-	Pumpendrehzahl erhöhen. Achtung! Max. Drehzah
				nicht überschreiten, NPSHr überprüfen.
			•	Größere Pumpe installieren.
Pumpe zu laut	Pumpendrehzahl zu hoch	20	•	Pumpendrehzahl verringern. Bei Bedarf größere Pumpe installieren.
	Kavitation	21	•	Entfernung zwischen Pumpe und Ansaugtankfüllstand verringern.
			-	Querschnitt der Ansaugleitung erhöhen.
			•	Länge der Ansaugleitung verringern, Aufbau vereinfachen (so wenig Krümmer und Fittings wie möglich).
				Siehe auch Abschnitt 3.17 Installation.
	Gegendruck zu hoch	22	•	Rohrquerschnitt erhöhen.
			•	Betriebsdruck verringern.
			•	Zubehör überprüfen (Filter, Wärmetauscher usw.).
	Schwingungen der Rohrleitung	23	•	Leitungen besser befestigen.
	Kugellager beschädigt oder verschlissen	24	•	Kugellager austauschen.
Zu hoher Stromverbrauch	Pumpendrehzahl zu hoch	25	-	Pumpendrehzahl verringern. Bei Bedarf größere Pumpe installieren.
der Pumpe oder Pumpe wird heiß	Viskosität zu hoch	26	•	Axialspiel erhöhen.
ampe whathers				Siehe Abschnitt 3.20 Wartungsanleitungen.
			-	Pumpe erwärmen.
			-	Pumpendrehzahl verringern.
			•	Druckleitung mit größerem Querschnitt wählen.
Starker Verschleiß	Gegendruck zu hoch	27	•	Rohrquerschnitt erhöhen.
verscritetib			•	Betriebsdruck verringern.
			•	Zubehör überprüfen (Filter, Wärmetauscher usw.).
	Feststoffpartikel im Fördermedium	28	•	Fördermedium f Itern.
	Pumpe läuft trocken	29	•	Zufuhr des Fördermediums korrigieren.
			•	Niveauschalter oder Trockenlaufschutz vorsehen.
			•	Fördermedium erwärmen.
			•	Luftansaugung stoppen oder reduzieren.
	Korrosion	30	•	Pumpenwerkstoffe oder Anwendungs- Parameter ändern.
Motorüberlast	Gegendruck zu hoch	31	-	Rohrquerschnitt erhöhen.
			•	Betriebsdruck verringern.
			•	Zubehör überprüfen (Filter, Wärmetauscher usw.).
	Viskosität zu hoch	32	•	Axialspiel erhöhen. Siehe Abschnitt 3.20 Wartungsanleitungen.
			-	Pumpe erwärmen.
			-	Pumpendrehzahl verringern.
				Druckleitung mit größerem Querschnitt wählen.
Undichtigkeit der Pumpe	Gleitringdichtung undicht	33	-	Gleitringdichtung austauschen.
Starker	Viskosität zu hoch	34		Pumpe erwärmen.
Verschleiß der	Mangelhafte Entlüftung/Trockenlauf	35		Pumpe mit Flüssigkeit befüllen.
Gleitringdichtung			•	Lage des Sicherheitsventils oder der oberen Abdeckung prüfen.
	Temperatur zu hoch	36		Temperatur senken.
	Tomporatar 24 moon	00	H	Passende Gleitringdichtung einbauen.
	Zu lange Ansaugzeit/Trockenlauf	37		Ansaugleitung kürzen.
	La lange Ansaugzen/ mockeniaul	3/	H	Trockenlaufschutz vorsehen.
			H	
	Em 11 November 1			Prüfen Sie die maximal zulässige Trockenlaufgeschwindigkeit für die Gleitringdichtung
	Flüssigkeit ist abrasiv	38	•	Flüssigkeit f Itern oder neutralisieren.

Hinweis! Wenn diese Symptome anhalten, muss die Pumpe sofort abgeschaltet werden. Kontaktieren Sie Ihren Händler vor Ort.

3.19.1 Anleitungen für die Wiederverwendung oder Entsorgung

3.19.1.1 Wiederverwendung

Die Pumpe darf erst dann wieder verwendet oder außer Betrieb genommen werden, nachdem alle Innenteile vollständig entleert und gereinigt worden sind.

Hinweis! Dabei sind angemessene Sicherheitsvorschriften zu beachten und Umweltschutzmaßnahmen zu ergreifen.

Fördermedien müssen entsprechend der geltenden Sicherheitsvorrichtung entleert werden; es ist die richtige persönliche Schutzausrüstung zu verwenden.

3.19.1.2 Entsorgung

Die Pumpe darf erst entsorgt werden, nachdem sie vollständig entleert worden ist. Halten Sie die geltenden Vorschriften ein.

Demontieren Sie das Produkt gegebenenfalls und bereiten Sie die Werkstoffe der Teile wieder auf.

3.20 Wartungsanleitungen

3.20.1 Allgemein

In diesem Kapitel werden lediglich die normalen Wartungsarbeiten beschrieben, die an Ort und Stelle ausgeführt werden können.

Für Wartung und Reparaturen, die in einer Werkstatt auszuführen sind, wenden Sie sich an Ihren Händler vor Ort.

 Unzureichende, falsche oder unregelmäßige Montage- und Demontagearbeiten können zu Funktionsstörungen der Pumpe, zu hohen Reparaturkosten und langen Ausfallzeiten führen. Aus diesem Grund sind die Hinweise in diesem Kapitel sorgfältig zu beachten.

Halten Sie während Wartungsarbeiten aufgrund von Inspektionen, vorbeugenden Wartungsmaßnahmen oder Entfernung aus der Anlage stets das genannte Vorgehen ein.

Die Nichtbeachtung dieser Vorschriften und Warnhinweise kann für den Bediener gefährlich sein bzw. könnte die Pumpe/das Pumpenaggregat ernsthaft beschädigen.

 Wartungsarbeiten dürfen nur durch entsprechend ausgebildete Personen erfolgen. Das Tragen der erforderlichen Schutzkleidung schützt vor hohen Temperaturen und gefährlichen und/oder korrodierenden Flüssigkeiten. Das Personal muss das gesamte Betriebshandbuch gelesen haben.
 Verweisen Sie insbesondere auf die Abschnitte, die sich auf die vorliegende Arbeit beziehen.

SPX FLOW lehnt jede Verantwortung f
ür Unf
älle und Sch
äden ab, die sich aus der Nichtbeachtung
dieser Hinweise ergeben.

3.20.2 Vorbereitung

3.20.2.1 Arbeitsumgebung (am Standort)

Da einige Teile sehr enge Toleranzen aufweisen und möglicherweise leicht beschädigt werden können, muss eine saubere und aufgeräumte Arbeitsf äche geschaffen werden.

3.20.2.2 Werkzeuge

Für Wartungs- und Reparaturarbeiten sind nur technisch geeignete Werkzeuge in gutem Zustand zu verwenden. Werkzeuge nur in der vorgesehenen Art und Weise einsetzen.

3.20.2.3 Abschalten

Vor Beginn der Wartungs- und Inspektionsarbeiten muss die Pumpe außer Betrieb gesetzt werden. Der Druck in der Pumpe/im Pumpenaggregat ist vollständig abzulassen. Wenn das Fördermedium dies zulässt, ist die Pumpe auf Umgebungstemperatur abzukühlen.

3.20.2.4 Motorsicherheit

Es sind ausreichende Maßnahmen zu ergreifen, damit der Motor während der Wartungsarbeiten nicht gestartet werden kann. Bei Elektromotoren, die mit Fernbedienung gestartet werden, ist dies besonders wichtig. Gehen Sie wie folgt vor:

- Den Trennschalter an der Pumpe in die "Aus"-Position schalten.
- Den Schalter für die Pumpe im Schaltschrank ausschalten.
- Den Steuer- oder Verteilerschrank absichern oder ein Warnzeichen anbringen.
- Sicherungen herausnehmen und am Arbeitsplatz verwahren.
- Die Schutzabdeckung über der Kupplung erst dann abnehmen, wenn die Pumpe vollständig zum Stillstand gekommen ist.

3.20.2.5 Lagerung

Wird die Pumpe für längere Zeit nicht benutzt:

- Zunächst Pumpe vollständig entleeren.
- Anschließend alle Innenteile mit VG46 Mineralöl oder einem gleichwertigen Schutzmittel (z. B. einem lebensmittelechten Öl für Lebensmittelanwendungen) behandeln.
- Die Pumpe muss wöchentlich einmal kurz gestartet oder die Welle einmal wöchentlich vollständig gedreht werden. Auf diese Weise ist gewährleistet, dass das Schutzöl richtig zirkuliert.

3.20.2.6 Reinigung der Außenfiächen

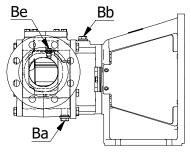
- Die Oberf äche der Pumpe ist stets möglichst sauber zu halten. Dies vereinfacht die Kontrolle, die angebrachten Markierungen bleiben sichtbar.
- Reinigungsf üssigkeiten dürfen nicht in die Kugellagergehäuse gelangen. Alle Teile, die nicht mit Flüssigkeit in Berührung kommen sollen, müssen abgedeckt werden. Bei abgedichteten Lagern dürfen die Reinigungsprodukte die Gummidichtungen nicht angreifen. Heiße Pumpenteile niemals mit Wasser besprühen, bestimmte Bauteile könnten wegen der plötzlichen Kühlung reißen und die geförderte Flüssigkeit könnte in die Umgebung entweichen (Spritzgefahr!).

3.20.2.7 Elektroinstallation

- Wartungsarbeiten an der Elektroanlage dürfen nur von Fachpersonal und nach Trennen der Netzstromversorgung ausgeführt werden. Die geltenden Sicherheitsvorschriften sind genauestens zu befolgen.
 - Diese Vorschriften sollen darüber hinaus genauestens bei Arbeiten eingehalten werden, während die Stromversorgung noch angeschlossen ist.
- Die zu reinigenden Elektrogeräte müssen über eine ausreichende Schutzklasse verfügen (IP54 bedeutet beispielsweise Schutz gegen Staub und Spritzwasser, nicht jedoch gegen Wasserstrahl).
 Siehe EN 60529. Wählen Sie eine geeignete Methode für die Reinigung der Elektrogeräte.
- Defekte Sicherungen sind durch Originalsicherungen der vorgeschriebenen Stromstärke zu ersetzen.
- Nach jeder Wartung sind alle Teile der elektrischen Anlage zu überprüfen. Sichtbare Schäden sind nach Notwendigkeit zu reparieren.

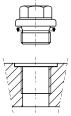
3.20.2.8 Ablassen des Fördermediums

- Druck- und Saugleitung möglichst dicht an der Pumpe absperren.
- Die Pumpe vor dem Entleeren auf Umgebungstemperatur abkühlen lassen, wenn das Fördermedium dies zulässt


 Bei Fördermedien, die sich verfestigen oder bei Umgebungstemperatur sehr viskos sind, sollte die Pumpe sofort nach dem Abschalten entleert werden; dazu ist sie von den Leitungen zu trennen. Stets Schutzbrille und Sicherheitshandschuhe tragen.

- Schützen Sie sich mit einem Schutzhelm.
 Das Fördermedium könnte aus der Pumpe spritzen.
- Öffnen Sie die Entlüftungsstopfen Be und Bb.
- Falls keine Ablauf eitung vorgesehen ist, ist für eine umweltverträgliche Beseitigung des Fördermediums Sorge zu tragen.
- Öffnen Sie den Ablassstopfen Ba an der Unterseite des Pumpengehäuses.
- Das Fördermedium ablaufen lassen.
- Die Pumpeninnenräume mit Spülmittel oder Reinigungsf üssigkeit über eine Spülvorrichtung an den folgenden Einlassöffnungen reinigen:
 - Ba, Be: der Pumpenraum
 - Ba, Bb: der Raum hinter dem Rotor
- Die Stopfen wieder montieren und die Ventile gegebenenfalls schließen.

- Den Druck in den Heiz/Kühlmänteln und den zugehörigen Kreisläufen des Fördermediums ablassen.
- Den Anschluss von Mänteln und Zirkulations- oder Sperrf üssigkeitskreisläufen lösen.
- Wenn nötig, Mäntel und Rohrleitungen mit Druckluft reinigen.
- Umweltverunreinigungen durch Flüssigkeiten oder Thermalöl vermeiden.


3.20.3 Besondere Bauteile

3.20.3.1 Muttern und Schrauben

Beschädigte Teile, wie z. B. Muttern und Schrauben oder Teile mit beschädigtem Gewinde, müssen entfernt und durch Teile derselben Festigkeitsklasse ersetzt werden.

- Verwenden Sie zum Anziehen vorzugsweise einen Drehmomentschlüssel.
- Die in folgender Tabelle aufgelisteten Anzugsmomente sind zu beachten.

Schraube	Ma (Nm) 8,8/A4	Stopfen mit Bund und Flachdichtung	Ma (Nm)
M6	10	G 1/4	20
M8	25	G 1/2	50
M10	51	G 3/4	80
M12	87	G 1	140
M16	215	G 1 1/4	250
M20	430		
M24	740		
M30	1500		

Stopfen mit Bund und elastischer Unterlegscheibe

3.20.3.2 Teile aus Kunststoff oder Gummi

- Aus Gummi oder Kunststoff gefertigte Teile (Kabel, Schläuche, Dichtungen) nicht der Einwirkung von Ölen, Lösungsmitteln, Reinigungsf üssigkeiten oder anderen Stoffen aussetzen – es sei denn, sie sind dafür geeignet.
- Diese Teile sind zu ersetzen, wenn sie Anzeichen von Quetschung, Schrumpfen, Verhärtung oder andere Beschädigungen aufweisen.

3.20.3.3 Flachdichtungen

- Flachdichtungen nie mehrmals verwenden.
- Die Flachdichtungen und die Dichtungsringe unter den Stopfen stets durch Originalteile von SPX FLOW ersetzen.

3.20.3.4 Filter oder Ansaugfilter

Wenn Filter oder Ansaugf Iter in der Saugleitung vorhanden sind, müssen diese regelmäßig gereinigt werden. **Hinweis!** Ein verstopfter Filter in der Ansaugleitung kann zu einem unzureichenden Saugdruck am Einlass führen. Verstopfte Filter in der Druckleitung können den Förderdruck erhöhen.

3.20.3.5 Wälzlager

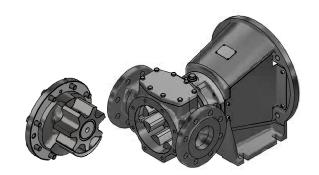
TG BLOC-Pumpen sind mit wartungsfreien, fettgeschmierten Kugellagern vom Typ 2RS ausgestattet. Sie benötigen kein Nachschmieren.

3.20.3.6 Gleitlager

Es wird empfohlen, die Pumpe regelmäßig auf Verschleiß der beweglichen Teile, wie Rotor, Ritzel, Lager usw., zu überprüfen, um den übermäßigen Verschleiß anderer Teile zu verhindern.

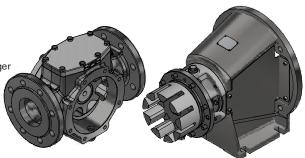
- Eine Schnellüberprüfung kann mit dem "Front-Pullout"und "Back-Pullout"-System durchgeführt werden.
 Siehe Tabelle für das maximal zulässige Radialspiel der Gleitlager.
- Wenden Sie sich bezüglich des Austauschs der Gleitlager an Ihren Händler vor Ort.

TG BLOC Pumpengröße	Maximal zulässige Radialspiele
15-50 bis 23-65	0,15 mm
58-80 bis 86-100	0,25 mm


3.20.3.7 Wellendichtung - Gleitringdichtung

Wenn die Gleitringdichtung übermäßig leckt, muss sie durch eine Dichtung desselben Typs ersetzt werden.

Hinweis! Die Werkstoffe der Gleitringdichtung werden in strikter Übereinstimmung mit der Art des Fördermediums und den Betriebsbedingungen ausgewählt. Daher darf die Pumpe nur die Fördermedien fördern, für die sie erworben wurde. Wenn die Fördermedien oder die Betriebsbedingungen geändert werden, muss eine für die neuen Betriebsbedingungen geeignete Gleitringdichtung eingebaut werden.

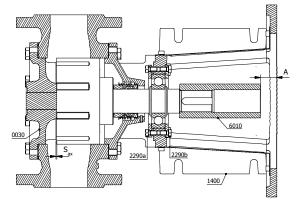

3.20.4 Front-Pullout

Die TG BLOC-Pumpen verfügen auch über ein Front-Pullout-System.
Um Restmengen aus dem Pumpeninnenraum zu entleeren oder das Ritzellager auf Verschleiß zu prüfen, kann der Pumpendeckel aus dem Pumpengehäuse herausgezogen werden, ohne die Anschlüsse der Saug- und Druckleitung zu lösen.
Siehe Kapitel 4.0 Demontage/Montage und Abschnitt 6.5 Gewichte.

3.20.5 Back-Pullout

Um den Pumpenraum hinter dem Rotor zu reinigen oder zu reparieren oder das Gleitlager auf Verschleiß zu untersuchen, können Lagerträger mit dem Zwischengehäuse, der Welle und mit dem Rotor leicht komplett rückwärts herausgezogen werden, ohne die Anschlüsse der Saug- und Druckleitung zu lösen.
Siehe Kapitel 4.0 Demontage/Montage und Abschnitt 6.6 Gewichte.

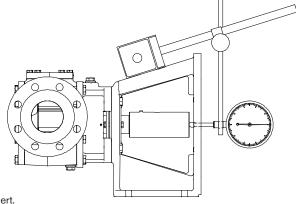
3.20.6 Einstellung der Toleranzen


Die TG BLOC-Pumpen werden mit korrekt eingestelltem Axialspiel geliefert. In einigen Fällen muss das Axialspiel jedoch justiert werden:

- Wenn gleichmäßiger Verschleiß von Rotor und Ritzel auszugleichen ist.
- Wenn beim F\u00f6rdern von niedrigviskosen F\u00fcssigkeiten die Spaltverluste verringert werden m\u00fcssen.
- Wenn bei der Förderung von Fördermedien mit höherer Viskosität die Flüssigkeitsreibung in der Pumpe durch Erhöhung des Axialspiels verringert werden soll.

Nominales Axialspiel				
TG BLOC Pumpengröße	(S _{ax}) [mm]			
15-50 bis 23-65	0,10-0,15			
58-80 bis 86-100	0,15-0,20			

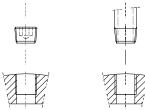
Zur Justierung des Axialspiels gehen Sie wie folgt vor:


- 1. den Motor vom Lagerträger demontieren.
- die Gewindeschrauben (2290a) an der Pumpengehäuseseite lösen.
- Die Gewindeschrauben (2290b) auf der Motorseite anziehen, bis die Pumpenwelle mit Rotor und Lager vollständig gegen den Pumpendeckel gedrückt ist, das Axialspiel "S_{ax}" ist dann 0.
- 4. Den Abstand "A" zwischen Kupplung (6010) und Sperrringf ansch (1400) messen.
- Die Gewindeschrauben (2290b) lösen und das Kugellager durch gleichmäßiges Anziehen der Gewindeschrauben (2290a) f xieren, wodurch die Welle mit Rotor und Kugellager nach hinten gedrückt wird.

- Messen Sie erneut den Abstand "A" zwischen Kupplung (6010) und Sperrringf ansch (1400): Die Differenz zwischen den gemessenen Abständen ist das neue Axialspiel "S_a".
 - Wenn das Axialspiel zu klein ist, wiederholen Sie die Schritte 5 und 6.
 - Wenn das Axialspiel zu groß ist, die Gewindeschrauben (2290a) wieder lösen, dann die Gewindeschraube (2290b) anziehen und Schritt 6 wiederholen.

Eine weitere Methode zur Einstellung des Axialspiels mithilfe eines Magnetständers und einer Messuhr.

- 1. Den Motor vom Lagerträger demontieren.
- 2. Die Gewindeschrauben (2290a) an der Pumpengehäuseseite lösen.
- Die Gewindeschrauben (2290b) auf der Motorseite anziehen, bis die Pumpenwelle mit Rotor und Lager vollständig gegen den Pumpendeckel gedrückt ist, das Axialspiel "S_{ax}" ist dann 0.
- Setzen Sie den Magnetständer auf den Lagerträger und den Messuhrkolben auf die Kupplung und initialisieren Sie die Messuhr.
- Die Gewindeschrauben (2290b) lösen und die Gewindeschrauben (2290a) gleichmäßig anziehen, bis die Nadel der Messuhr etwas mehr (0,02 mm) als das gewünschte Spiel registriert.
- Befestigen Sie das Kugellager, indem Sie die Gewindeschrauben (2290b) anziehen, bis die Nadel der Messuhr auf das gewünschte Spiel zurückfällt.


3.20.7 Bezeichnung der Gewindeanschlüsse

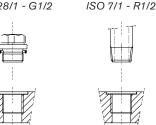
Zur Einteilung der Dichtungstypen bei den gelieferten Gewindeanschlüssen werden diese wie folgt nach den Normen ISO 7/1 und ISO 228/1 beurteilt.

3.20.7.1 Gewindeanschlüsse Rp (Beispiel Rp 1/2)

Wird keine f ache Bundf äche verwendet, wird die Verschraubung als Rp gemäß ISO 7/1 bezeichnet. Diese Verbindung muss im Gewinde gedichtet werden. Die Stopfen oder Gewindeverbindungen müssen mit konischem Gewinde gemäß ISO 7/1 Außengewinde ausgerüstet sein (Beispiel: ISO 7/1 – R1/2).

Konischer Stopfen Konisches Leitungsende ISO 7/1 - R1/2 ISO 7/1 - R1/2

I	SO 7/1	Тур	Symbol	Beispiel
I	nnengewinde	Zylindrisch (parallel)	Rp	ISO 7/1 - Rp 1/2
A	Außengewinde	Immer konisch (verjüngt)	R	ISO 7/1 - R 1/2


3.20.7.2 Gewindeverschraubungen G (Beispiel: G 1/2)

Konisches Leitungsende

Bei Verwendung einer fachen Bundf äche wird die Verschraubung als G gemäß ISO 228/1 bezeichnet. Diese Verbindung kann mit einer Dichtungsscheibe abgedichtet werden. Die Gewindestopfen und Gewindeverschraubungen müssen einen Dichtbund und zylindrisches Außengewinde gemäß ISO 228/1 aufweisen (Beispiel: ISO 228/1 – G1/2).

Stopfen oder Gewindeverbindungen mit konischem Gewinde gemäß ISO 7/1 Außengewinde (Beispiel: ISO 7/1 – R1/2) können auch verwendet werden.

ISO 228/1	Toleranzklasse	Symbol	Beispiel
Innengewinde	Nur eine Klasse	G	ISO 228/1 - G 1/2
AuRangouinda	Klasse A (Standard)	G	ISO 228/1 – G 1/2
Außengewinde	Klasse B (zusätzliches Spiel)	GB	ISO 228/1 – G 1/2 B
ISO 7/1 Typ		Symbol	Beispiel
Außengewinde	Immer konisch (verjüngt)	R	ISO 7/1 - R 1/2

4.0 Anleitungen für die Montage und Demontage

4.1 Allgemein

Unzureichende, falsche oder unregelmäßige Montage- und Demontagearbeiten können zu Funktionsstörungen der Pumpe, zu hohen Reparaturkosten und langen Ausfallzeiten führen. Kontaktieren Sie Ihren Händler für weitere Informationen.

Demontage- und Montagearbeiten dürfen nur von qualif ziertem Personal ausgeführt werden. Diese Personen sollen mit der Pumpe vertraut sein und nachstehende Anweisungen befolgen.

Das Nichtbefolgen dieser Vorschriften oder die Nichtbeachtung der Warnhinweise kann zu Gefahren für den Bediener und/oder ernsthaften Beschädigungen an der Pumpe bzw. dem Pumpenaggregat führen. SPX FLOW haftet nicht für Unfälle und Schäden, die sich infolge der Nichtbeachtung dieser Vorschriften bzw. der Anleitung ergeben.

4.2 Werkzeuge

Mutternschlüssel
 Sechskantschlüssel
 Maulweite 8-30
 Maulweite 2-14

- Schraubendreher

Rückschlagfreier Hammer Gummi, Kunststoff, Blei

- Karton, Papier, Weichleder

- Kupplungsabzieher

LagerabzieherMontageöl

- Montageöl z. B. Shell ONDINA 15
Esso BAYOL 35
oder Schmiermittel z. B. OKS 477
- Loctite 241 Max. Temperatur = 150 °C

Loctite 648
 Messwerkzeug für Einstellung

des Axialspiels

 Messwerkzeug zur Feststellung der Höhe der Regelschraube am Sicherheitsventil Siehe auch Abschnitt 3.20.6

Hitzebeständig

Siehe auch Abschnitt 3.16.3

4.3 Vorbereitung

Alle nachstehend beschriebenen Tätigkeiten sind in einer für Instandsetzungen geeigneten Werkstätte oder in einer Mobilwerkstatt an der Einsatzstelle der Pumpe auszuführen.

Arbeiten nur in einer sauberen Umgebung ausführen. Alle empf ndlichen Teile, wie Dichtungen, Lager, Gleitringdichtungen usw., möglichst lange in der Verpackung belassen.

Beachten Sie stets die Hinweise in Abschnitt 3.20 in Bezug auf:

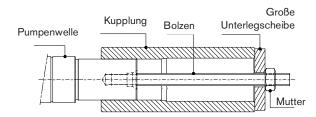
Abstellen der Pumpe

- Einstellung des Axialspiels
- Sicherheitsventil zum Einstellen von Back-Pullout und Front-Pullout
- Einstellung des Sicherheitsventils

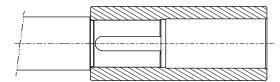
Ausbau der Pumpe aus der Anlage

4.4 Nach der Demontage

- Nach dem Zerlegen sind die Teile sorgfältig zu reinigen und auf Beschädigungen zu untersuchen.
 Alle beschädigten Teile sind auszutauschen.
- Austausch nur gegen Originalersatzteile.
- Bei der erneuten Montage sind neue Graphitdichtungen zu verwenden. Bereits gebrauchte Flachdichtungen dürfen nicht mehr verwendet werden.

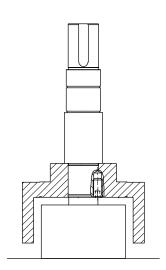

4.5 Kupplung

4.5.1 Allgemein


Die Kupplung hat eine Gleitpassung auf der Pumpenwelle. Hämmern oder starkes Drücken kann das Kugellager beschädigen und die Einstellung des Axialspiels beeinträchtigen.

4.5.2 TG BLOC15-50 bis TG BLOC86-100 - Montage der Kupplung

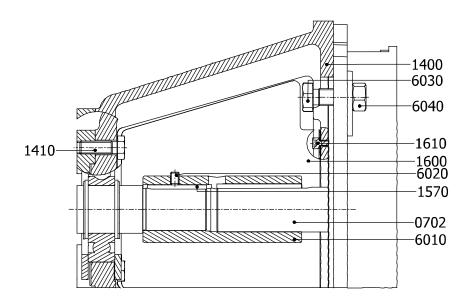
- 1. Eine Schraube (oder ein anderes Spezialwerkzeug) in die Gewindeöffnung der Pumpenwelle schrauben.
- Die Kupplung mit einer Mutter und einer großen Unterlegscheibe auf das Wellenende aufsetzen; Sie können die Kupplung zur leichteren Montage auch erwärmen (ca. 80 °C mit Wasser oder Öl).


(Die Kupplung am Rand des Wellenbunds montieren).

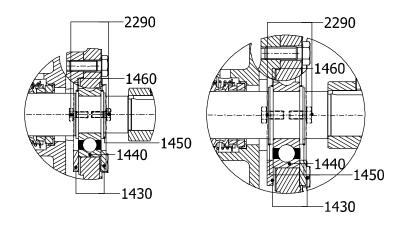
4.6 Wälzlager

4.6.1 Allgemein

- Ein demontiertes Lager und eine demontierte Sicherungsscheibe dürfen keinesfalls wieder verwendet werden!
- Zur Demontage und Montage des Lagers (und der Kupplung) sind geeignete Werkzeuge zu verwenden, um die Lager bei der Überprüfung vor Beschädigung durch Stoß und Schlag zu schützen. Stöße können zu Schäden an den spröden Werkstoffen der Gleitlager und Gleitringdichtungen führen.
- Das Wälzlager hat eine Presspassung an der Pumpenwelle und eine Gleitpassung im Lagerträger.
- Nach Erwärmung auf 80 °C kann das Wälzlager leicht auf die Pumpenwelle aufgeschoben werden.
- Beim Einsetzen des Lagers nur auf den Innenring drücken. Druck auf den Außenring kann zur Beschädigung der Wälzkörper führen.
- Unterstützen Sie nur die Pumpenwelle auf der Rotorseite, nicht den Rotor selbst! Axialer Druck kann zur Beschädigung des Schrumpfsitzes von Rotor und Welle führen.
- Wälzlager vom Typ 2RS sind lebensdauergeschmiert und mit Abdeckscheiben versehen.



4.6.2 TG BLOC15-50 bis TG BLOC86-100 - Demontage


- 1. Entfernen Sie Sechskantmuttern (6040) und Schrauben (6030) und bauen Sie den Flanschmotor aus.
- 2. Die Gewindeschrauben (1610) vom Lagerträger (1400) entfernen und die Schutzbleche (1600) abnehmen.
- Gewindestift (6020) an der Kupplung (6010) lösen und die Kupplung (6010) mit einem geeigneten Abzieher von der Welle (0702) abziehen.
- 4. Entfernen Sie die Passfeder der Welle (1570).
- 5. Die Zylinderkopfschrauben (2290) lösen und den Lagerdeckel (1430) entfernen.
- 6. Lösen Sie die Gewindeschraube (1410) und demontieren Sie den Lagerträger (1400).
- 7. Äußeren Sicherungsring (1450) und Stützring (1460) entfernen.
- Schieben Sie den zweiten Lagerdeckel (1430) in Richtung Pumpe und demontieren Sie das Lager (1440) mit einem geeigneten Abzieher.
- Den zweiten Stützring (1460) und den Innensicherungsring (1450 bei TG BLOC 58-80/86-100) entfernen, falls erforderlich.

4.6.3 TG BLOC15-50 bis TG BLOC86-100 - Montage

- Befestigen Sie zuerst den Lagerdeckel (1430) auf dem Lagerträger (1400), indem Sie die Gewindeschrauben (2290) an der Pumpenseite befestigen; ziehen Sie sie nicht vollständig an.
- 2. Den Lagerträger (1400) zusammenbauen, indem Sie die Gewindeschrauben (1410) anziehen.
- Den inneren Sicherungsring (1450 im Falle von TG BLOC 58-80/86-100) befestigen und den Stützring (1460) auf die Pumpenwelle (0702) setzen.
- Mit dem geeigneten Werkzeug ein neues Kugellager (1440) auf der Welle (0702) montieren und gegen den Stützring (1460) drücken.
- 5. Den zweiten Stützring (1460) und den äußeren Sicherungsring (1450) auf die Pumpenwelle setzen.
- 6. Befestigen Sie den Lagerdeckel (1430) und ziehen Sie die Gewindeschrauben (2290) an.
- Setzen Sie die Passfeder (1570) ein, montieren Sie die Kupplung (6010) (siehe Abschnitt 4.5.2) auf der Pumpenwelle (0702) und befestigen Sie die Stellschraube (6020).
- 8. Axialspiel einstellen (siehe Abschnitt 3.20.6).
- 9. Die Schutzbleche (1600) wieder befestigen, indem Sie die Gewindeschrauben (1610) anziehen.

DETAIL B: 15-50 / 23-65 DETAIL B: 58-80 / 86-100

Demontage und Montage der Kugellager TG BLOC15-50 bis 86-100

4.7 Gleitringdichtung

Richtlinien für den Zusammenbau und Einstellung der Gleitringdichtung – Pumpenbaureihe TG BLOC.

4.7.1 Allgemein

- Das gesamte mit der Wartung, Inspektion und Montage beauftragte Personal muss ausreichend qualif ziert sein.
- Gehen Sie gemäß den spezif schen Anweisungen vor, die mit der zu montierenden/justierenden Gleitringdichtung geliefert werden.
- Die Montage und Einstellung von Gleitringdichtungen muss in einer sauberen Umgebung erfolgen.
- Verwenden Sie technisch geeignetes Werkzeug, das sich in gutem Zustand bef ndet, und setzen Sie es nur in der vorgesehenen Art und Weise ein.

4.7.2 Vorbereitung

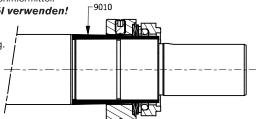
Prüfen Sie, ob die zu montierende Gleitringdichtung die geeignete Größe und Konstruktion hat und ob sie montiert werden kann. Die kurze einfach wirkende Gleitringdichtung gemäß EN12756 (DIN24960) kann eingebaut werden. Die Gleitringdichtung wird gegen den Rotorabsatz gesetzt.

TG BLOC Pumpengröße	15-50 23-65	58-80 86-100
Wellendurchmesser	40	45
Kurz gemäß EN12756 (DIN24960)	KU040	KU045
L1K (kurze Welle)	45	45

Abmessungen in mm

4.7.3 Spezialwerkzeuge

- Konische Schutzbuchse (9010)
- Weichleder


4.7.4 Allgemeine Montageanweisungen

- Die Flächen von Gleitringdichtungen nicht mit bloßen Händen berühren. Fingerabdrücke können die Gleitringdichtung undicht machen. Reinigen Sie ggf. die Gleitringdichtungsfächen. Verwenden Sie ein Weichleder.
- Wenn die Gleitringdichtungsfächen aus nicht selbstschmierendem Material bestehen, empf ehlt es sich, die Flächen ein wenig mit der gepumpten Flüssigkeit oder mit dünnfüssigem Öl zu schmieren.
 Kein Schmierfett verwenden!
- Schmieren Sie die O-Ringe beim Zusammenbau. Achten Sie auf die Verträglichkeit des Gummimaterials mit dem Schmiermittel. Verwenden Sie niemals Mineralöl für O-Ringe aus EP-Kautschuk.
- Beim Einbau von PTFE-Dichtungen muss die Welle ganz glatt sein. Die Montage von festen PTFE-Dichtungen lässt sich erleichtern, indem der stationäre Ring 15 Minuten lang in kochendem Wasser erhitzt wird.
 - Montieren Sie den Drehring auf einer Blindwelle vor und erwärmen Sie sowohl den Ring als auch die Welle 15 Minuten lang in kochendem Wasser. Dann alles abkühlen lassen. Um dicht zu sein, müssen die PTFE-Dichtungen etwa zwei Stunden ruhen, damit der O-Ring seine neue Form behält.
- In Fällen, in denen die Gleitringdichtung mit Befestigungsschrauben versehen ist, um den rotierenden Teil auf der Welle zu befestigen, wird empfohlen, die Befestigungsschrauben herauszudrehen, beide Bohrungen und Schrauben zu entfetten und mit Loctite (übliche Sorte 241 oder hitzebeständige Sorte 648) zu sichern.

4.7.5 Montage des rotierenden Teils

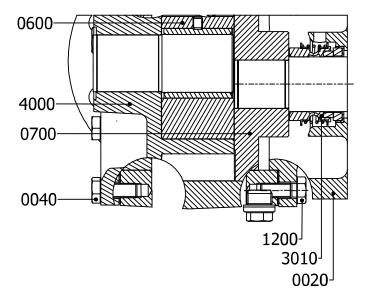
- Schmieren Sie die Welle ein wenig mit einem Schmiermittel.

 Achtung bei EP-Kautschuk: kein Mineralöl verwenden!
- Schützen Sie die scharfen Kanten der Welle mit Klebeband oder einem anderen Schutzwerkzeug.
- Verwenden Sie eine konische Montagebuchse (9010) auf der Wellenstufe (siehe Abbildung).
- Drücken Sie die rotierenden Teile gegen den Rotorabsatz.
- Träufeln Sie einen Tropfen hitzebeständiges Loctite auf die Stellschrauben setzen Sie die Stellschrauben in den rotierenden Teil ein. Schrauben anziehen.

4.7.6 Montage des stationären Sitzes

- Passen Sie den/die stationären Sitz(e) in das Zwischengehäuse ein.
- Drücken Sie den Sitz mithilfe geeigneter Werkzeuge senkrecht in sein Gehäuse.
- Schützen Sie dabei die Sitzoberf äche mit einem Stück Papier oder Karton und schmieren Sie die Gummidichtungselemente mit einem Schmiermittel. Dadurch wird die Montage erleichtert.
 Achtung! Verwenden Sie für EP-Kautschuk kein Mineralöl.
- Prüfen Sie die senkrechte Position der Sitzf äche zur Drehachse der Welle nach dem Zusammenbau.

4.8 Pumpen


4.8.1 Allgemein

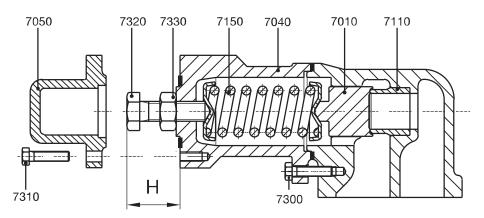
- Austausch beschädigter Teile nur gegen Originalersatzteile.
- · Bei erneuter Montage sind stets neue Graphitdichtungen zu verwenden. Dichtungen nie mehrmals verwenden.

4.8.2 TG BLOC15-50 bis TG BLOC86-100

Demontage

- 1. Lagerträger und Kugellager gemäß Beschreibung in Lagerdemontage Abschnitt 4.6.2 entfernen.
- Entfernen Sie den Pumpendeckel (4000), indem Sie die Schrauben (0040) lösen und das Ritzel (0600) entfernen.
- 3. Nehmen Sie das Zwischenghäuse (0020) ab, indem Sie vorher die Gewindeschrauben (1200) lösen.
- 4. Schieben Sie Rotor mit Welle (0700) von hinten heran und entfernen Sie sie.

Montage


- 1. Montieren Sie zunächst die Dichtung (3010), siehe Abschnitte 4.7.5 und 4.7.6.
- 2. Passen Sie das Zwischengehäuse (0020) ein und ziehen Sie die Gewindeschrauben (1200) an.

4.9 Sicherheitsventil

- Das Sicherheitsventil darf erst dann demontiert werden, wenn die Feder vollständig entspannt ist.
- Messen Sie vor dem Lösen der Feder die Position der Einstellschraube, so dass die Feder danach auf ihren ursprünglichen Öffnungsdruck eingestellt werden kann.

4.9.1 Demontage

- Schrauben (7310) herausdrehen und den Deckel (7050) abnehmen.
- Genau die Position der Regelschraube (7320) messen und den Wert notieren (siehe Abmessung H).
- Kontermutter (7330) und Regelschraube (7320) lösen, bis die Feder (7150) vollständig entspannt ist.
- Federgehäuse (7040) durch das Herausdrehen der Schrauben (7300) lösen.
- Feder (7150), Ventil (7010) und der Ventilsitz (7110) sind jetzt zugänglich.

Einbau und Ausbau des Sicherheitsventils

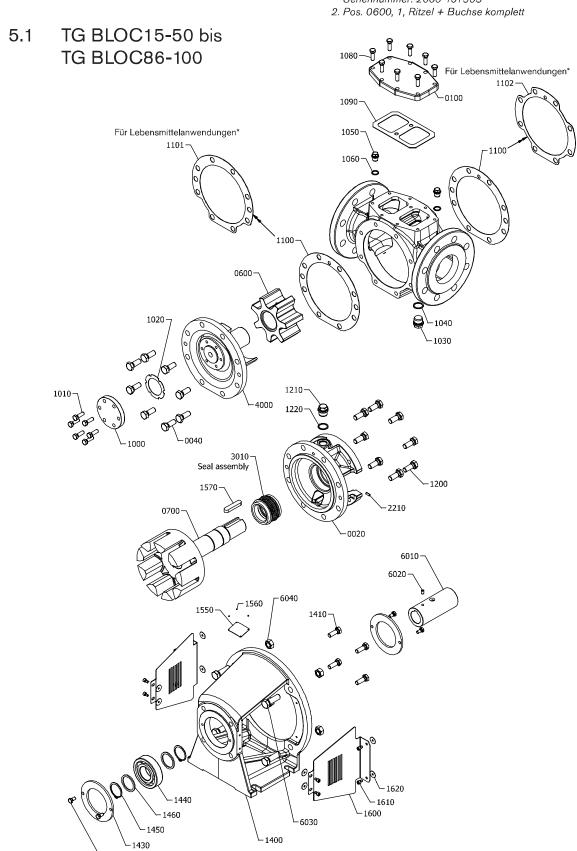
4.9.2 Montage

- Dichtf ächen des Ventilsitzes (7110) und des Ventils (7010) prüfen.
- Leichte Beschädigungen der Fläche können mit der entsprechenden Ventilschleifpaste beseitigt werden.
 Bei starker Beschädigung müssen der Ventilsitz (Achtung: Presssitz) und das Ventil ausgetauscht werden.
- Immer den richtigen Federtyp mit den Originalabmessungen und die dazugehörige Regelschraube montieren (siehe Abschnitt 3.16.3).
- Federgehäuse (7040) mit den Schrauben (7300) einbauen.
- Regelschraube (7320) mit der Kontermutter (7330) montieren, die Regelschraube auf den zuvor ermittelten Wert H einstellen.
- Diese Einstellung durch Kontern der Mutter (7330) sichern.

Anmerkung: Wird eine andere Ausführung von Feder und/oder Regelschraube eingebaut, so ist der Öffnungsdruck des Sicherheitsventils hydraulisch einzustellen.

Den Deckel (7050) mit den Schrauben (7310) befestigen.

Explosionszeichnungen und Teilelisten 5.0


Ersatzteilbestellung

Beispiel:

Bei der Ersatzteilbestellung geben Sie bitte Folgendes an: 1. Pumpentyp und Seriennummer (siehe Typenschild)

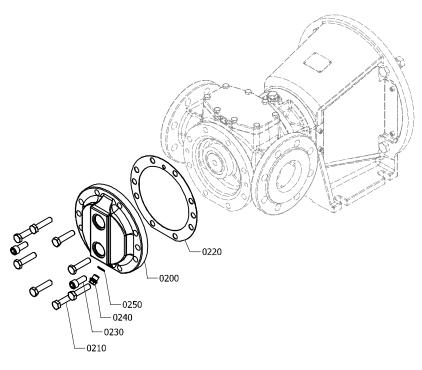
2. Positionsnummer, Menge und Beschreibung

1. Pumpentyp: TG BLOC58-80G2SSG2G1AV Seriennummer: 2000-101505

-2290

5.2.1 Hydraulikteil

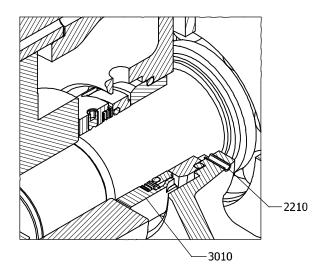
Pos.	Beschreibung	BLOC15-50	BLOC23-65	BLOC58-80	BLOC86-100	Wartung	Überholung
0010	Pumpengehäuse	1	1	1	1		
0020	Zwischengehäuse	1	1	1	1		
0040	Gewindeschraube	6	6	8	8		
0100	Obere Abdeckung, komplett	1	1	1	1		
0600	Ritzel + Buchse, komplett	1	1	1	1	Х	
0700	Rotor + Welle, komplett	1	1	1	1	Х	
1000	Ritzelabdeckung	1	1	1	1		
1010	Gewindeschraube	6	6	6	6		
1020	Dichtung	1	1	1	1	х	х
1030	Stopfen	1	1	1	1		
1040	Dichtring	1	1	1	1	Х	х
1050	Stopfen	2	2	2	2		
1060	Dichtring	2	2	2	2	Х	х
1080	Gewindeschraube	8	8	8	8		
1090	Dichtung	1	1	1	1	X	x
1100*	Dichtung	2	2	2	2	х	х
1101*	Dichtung	1	1	1	1	х	х
1102*	Dichtung	1	1	1	1	Х	х
1200	Schraube	6	6	8	8		
1210	Stopfen	1	1	1	1		
1220	Dichtring	1	1	1	1	Х	х
1230	Stopfen	1	1	1	1		
1570	Passfeder	1	1	1	1	Х	х
4000	Pumpendeckel + Ritzelzapfen, komplett	1	1	1	1	х	


^{*} Pos. 1100 gilt für Pumpen ohne Lebensmittelkontakt (2 pro Pumpe) Pos. 1101 und 1102 gilt für Lebensmittelpumpen (jeweils eine pro Pumpe)

5.2.2 Lagerträger

Pos.	Beschreibung	BLOC15-50	BLOC23-65	BLOC58-80	BLOC86-100	Wartung	Überholung
1400	Lagerträger	1	1	1	1		
1410	Gewindeschraube	4	4	4	4		
1430	Lagerabdeckung	2	2	2	2		
1440	Kugellager	1	1	1	1	Х	х
1450	Sicherungsring	1	1	2	2		х
1460	Stützring	2	2	2	2		
1550	Typenschild	1	1	1	1		
1560	Niet	4	4	4	4		
1600	Schutzblech	2	2	2	2		
1610	Gewindeschraube	8	8	8	8		
1620	Unterlegscheibe	8	8	8	8		
2290	Gewindeschraube	4	4	4	4		
6010	Kupplung	1	1	1	1		
6020	Stellschraube	1	1	1	1		
6030	Gewindeschraube	4	4	4*	4*		
6040	Mutter	4	4	4*	4*		

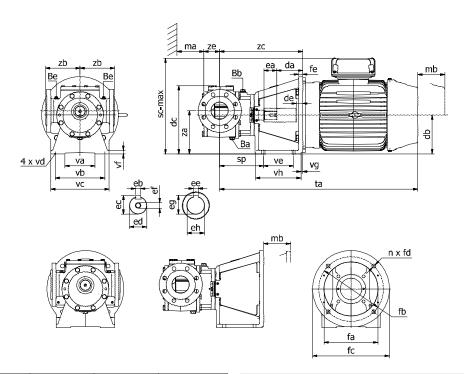
^{*} Für BLOC 58-80/86-100 mit IEC225: Menge der Pos. 6030 und 6040 ist 8


5.2.3 Mantel

Pos.	Beschreibung	BLOC15-50	BLOC23-65	BLOC58-80	BLOC86-100	Wartung	Überholung
0200	Mantelabdeckung	1	1	1	1		
0210	Gewindeschraube	6	6	8	8		
0220	Dichtung	1	1	1	1	х	х
0230	Zylinderkopfschraube (Inbus)	2	2	2	2		
0240*	Stopfen	1	1	1	1		
0250*	Dichtring	1	1	1	1	х	х

^{* 0240} und 0250 nicht zutreffend für 15-50/23-65 Grauguss-Ausführung

5.2.4 Einfach wirkende Gleitringdichtung



Pos.	Beschreibung	BLOC15-50	BLOC23-65	BLOC58-80	BLOC86-100	Wartung	Überholung
2210	Ritzel	1	1	1	1		
3010	Gleitringdichtung	1	1	1	1	х	х

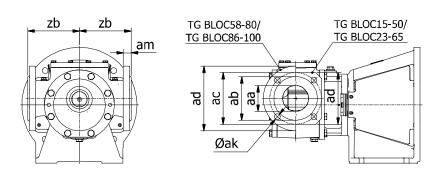
6.0 Maßzeichnungen

6.1 Standardpumpe

TG BLOC15-50 bis 86-100 6.1.1

	TG BLOC15-50	TG BLOC23-65	TG BLOC58-80	TG BLOC86-100
Ва	G 1/4	G 1/4	G 1/2	G 1/2
Bb	G 1/2	G 1/2	G 1/2	G 1/2
Ве	G 1/4	G 1/4	G 1/4	G 1/4
ea	50	50	60	60
eb	8 h9	8 h9	12 h9	12 h9
ec	33	33	43	43
ed	30 j6	30 j6	40 k6	40 k6
ef	M10	M10	M12	M12
ma	75	80	105	125
zb	125	125	160	180
ze (G)	61	70	81	91
ze (R)	68	80	94	109

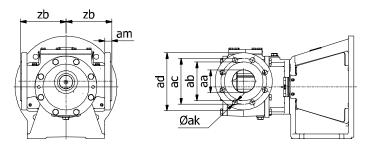
(G) – Grauguss (R) – Edelstahl


	MOTOR IEC-CEI	da	dB	dc	de	ee	eg	eh
	100L-B14-F165	68	112	209	8	8 H9	31,3	28 E7
20	112M-B14-F165	68	112	209	8	8 H9	31,3	28 E7
BLOC15-50	132S-B5-F265	94	150	247	19	10 H9	41,3	38 E7
BLO	132M-B5-F265	94	150	247	19	12 H9	41,3	38 E7
TG	160M-B5-F300	133	180	277	23	12 H9	45,3	42 E7
	160L-B5-F300	133	180	277	23	12 H9	45,3	42 E7
	100L-B14-F165	68	112	219	8	8 H9	31,3	28 E7
	112M-B14-F165	68	112	219	8	8 H9	31,3	28 E7
3-65	132S-B5-F265	94	150	257	19	1 0 H 9	41,3	38 E7
LOC	132M-B5-F265	94	150	257	19	10 H9	41,3	38 E7
TG BLOC23-65	160M-B5-F300	133	180	287	23	12 H9	45,3	42 E7
	160L-B5-F300	133	180	287	23	12 H9	45,3	42 E 7
	180M-B5-F300	133	180	287	23	14 H9	51,8	48 E7
	160M-B5-F300	119	180	317	29	12 H9	45,3	42 E7
TG BLOC58-80	160L-B5-F300	119	180	317	29	12 H9	45,3	42 E7
POC	180L-B5-F300	119	180	317	29	14 H9	51,8	48 E7
IG B	200L-B5-F350	119	200	337	29	16 H9	59,3	55 E7
	225-B5-F400	150	225	362	30	18 H9	64,4	60 E7
	160M-B5-F300	119	180	335	29	12 H9	45,3	42 E7
6-10	160L-B5-F300	119	180	335	29	12 H9	45,3	42 E7
BLOC86-100	180L-B5-F300	119	180	335	29	14 H9	51,8	48 E7
TG BI	200L-B5-F350	119	200	355	29	16 H9	59,3	55 E7
-	225-B5-F400	150	225	380	30	18 H9	64,4	60 E7

	MOTOR IEC-CEI	fa	fb	fc	n x fd	fe	mb	sp	ta	va	vb	vc	vd	ve	vf	vg	vh	za	zc	sc-max
	100L-B14-F165	130	165	220	4 x 12	13	80	167	604	100	170	200	12	85	13	6	150	125	287	285
20	112M-B14-F165	130	165	220	4 x 12	13	80	167	621	100	170	200	12	85	13	6	150	125	287	310
C15	132S-B5-F265	230	265	300	4 x 14	16	100	168	686	110	200	235	14	100	15	7	175	163	313	380
TG BLOC15-50	132M-B5-F265	230	265	300	4 x 14	16	100	168	724	110	200	235	14	100	15	7	175	163	313	380
16	160M-B5-F300	250	300	356	4 x 18	19	130	170	841	140	230	270	14	140	16	9	210	193	352	447
	160L-B5-F300	250	300	356	4 x 18	19	130	170	885	140	230	270	14	140	16	9	210	193	352	447
	100L-B14-F165	130	165	220	4 x 12	13	80	167	604	100	170	200	12	85	13	6	150	125	287	285
	112M-B14-F165	130	165	220	4 x 12	13	80	167	621	100	170	200	12	85	13	6	150	125	287	310
TG BLOC23-65	132S-B5-F265	230	265	300	4 x 14	16	100	168	686	110	200	235	14	100	15	7	175	163	313	380
LOC	132M-B5-F265	230	265	300	4 x 14	16	100	168	724	110	200	235	14	100	15	7	175	163	313	380
TG B	160M-B5-F300	250	300	356	4 x 18	19	130	170	841	140	230	270	14	140	16	9	210	193	352	447
-	160L-B5-F300	250	300	356	4 x 18	19	130	170	885	140	230	270	14	140	16	9	210	193	352	447
	180M-B5-F300	250	300	356	4 x 18	19	130	170	907	140	230	270	14	140	16	9	210	193	352	460
	160M-B5-F300	250	300	356	4 x 18	19	130	203	873	140	230	270	14	140	16	9	210	200	385	447
28-80	160L-B5-F300	250	300	356	4 x 18	19	130	203	917	140	230	270	14	140	16	9	210	200	385	447
LOC	180L-B5-F300	250	300	356	4 x 18	19	130	203	977	140	230	270	14	140	16	9	210	200	385	460
TG BLOC58-80	200L-B5-F350	300	350	400	4 x 19	19	130	203	1042	140	270	300	14	140	16	9	210	220	385	520
Ľ	225-B5-F400	350	400	450	8 x 19	22	160	221	1123	160	290	320	18	140	20	9	240	245	416	610
	160M-B5-F300	250	300	356	4 x 18	19	130	213	883	140	230	270	14	140	16	9	210	205	395	447
6-10	160L-B5-F300	250	300	356	4 x 18	19	130	213	927	140	230	270	14	140	16	9	210	205	395	447
COCS	180L-B5-F300	250	300	356	4 x 18	19	130	213	987	140	230	270	14	140	16	9	210	205	395	460
TG BLOC86-100	200L-B5-F350	300	350	400	4 x 19	19	130	213	1052	140	270	300	14	140	16	9	210	225	395	520
Ĺ	225-B5-F400	350	400	450	8 x 19	22	160	231	1133	160	290	320	18	140	20	9	240	250	426	610

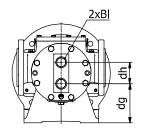
6.2 Flanschverbindungen

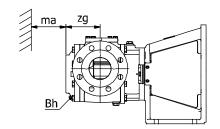
6.2.1 TG BLOC15-50 bis 86-100


6.2.1.1 Grauguss

	TG BLOC15-50	TG BLOC23-65	TG BLOC58-80	TG BLOC86-100
aa	50	65	80	100
ab	100	118	135	153
ac PN16	125	145	160	180
ac PN20	120,5	139,5	152,5	190,5
ad	125 *)	145 *)	200	220
ak PN16	4xd18	4xd18	8xd18	8xd18
ak PN20	4xd18	4xd18	4xd18	8xd18
am	21	21	24	25
zb	125	125	160	180

^{*)} Quadratische Flansche anstelle von runden Flanschen

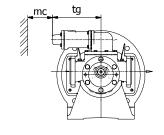

6.2.1.2 Edelstahl

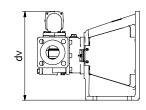


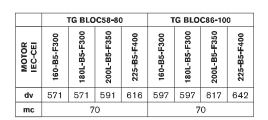
	TG BLOC15-50	TG BLOC23-65	TG BLOC58-80	TG BLOC86-100
aa	50	65	80	100
ab	98	120	133	160
ac PN16	125	145	160	180
ac PN20	120,5	139,5	152,5	190,5
ac PN25	125	145	160	190
ac PN40	125	145	160	190
ac PN50	127	149,5	168	200
ad	165	187	206	238
ak PN16	4xd18	4xd18	8xd18	8xd18
ak PN20	4xd18	4xd18	4xd18	8xd18
ak PN25	4xd18	8xd18	8xd18	8xd22
ak PN40	4xd18	8xd18	8xd18	8xd22
ak PN50	8xd18	8xd22	8xd22	8xd22
am	21	21	24	25
zb	125	125	160	180

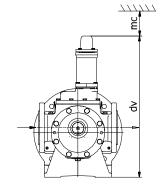
6.3 Mäntel (S) am Pumpendeckel und mit Gewindeanschluss

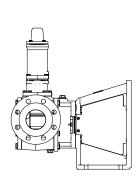
6.3.1 TG BLOC15-50 bis 86-100

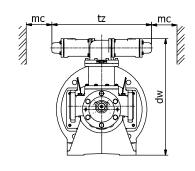

	Mat.	TG BLOC15-50	TG BLOC23-65	TG BLOC58-80	TG BLOC86-100	
ві	Grauguss (G)	G 3/4	G 3/4	G 1	G 1	
ы	Edelstahl (R)	G 1/2	G 1/2	G 3/4	G 3/4	
Bh	Grauguss (G)	_	_	G 1/4	G 1/4	
ы	Edelstahl (R)	G 1/4	G 1/4	G 1/4	G 1/4	
dh	Grauguss (G)	50	50	78	90	
uii	Edelstahl (R)	50	56	76	90	
ma	Grauguss (G)/Edelstahl (R)	75	80	105	125	
	Grauguss (G)	85	96	123	140	
zg	Edelstahl (R)	96	110	123	140	

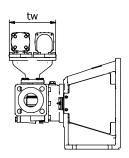

	TG BLOC15-50		TG BLOC23-65				TG BLOC58-80			TG BLOC86-100					
MOTOR IEC-CEI	100L/112M-B14-F165	132-B5-F265	160-B5-F300	100L/112M-B14-F165	132-B5-F265	160-B5-F300	180M-B5-F300	160-B5-F300	180L-B5-F300	200L-B5-F350	225-B5-F400	160-B5-F300	180L-B5-F300	200L-B5-F350	225-B5-F400
dg	87	125	155	87	125	155	155	141	141	161	186	135	135	155	180

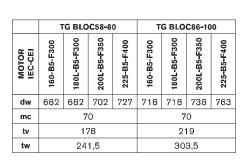

6.4 Sicherheitsventile

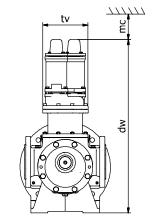

6.4.1 Einfachwirkendes Sicherheitsventil

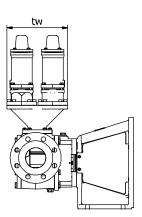

	TG	BLOC1	5-50	TG BLOC23-65					
MOTOR IEC-CEI	06 100L/112M-B14-F165 06 132-B5-F265		160-B5-F300	100L/112M-B14-F165	132-B5-F265	160-B5-F300	180M-B5-F300		
dv	290	328	358	300	338	368	368		
mc		50			5	0			
tg		196		196					

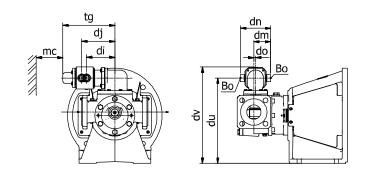


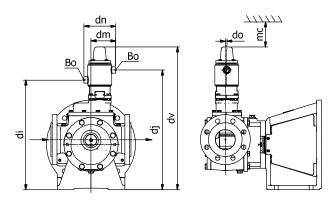





6.4.2 Doppeltwirkendes Sicherheitsventil

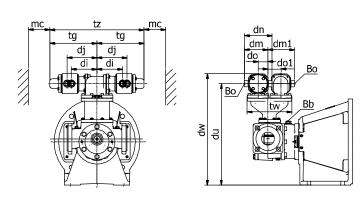

	TG	BLOC1	5-50	•	TG BLO	C23-65	5	
MOTOR IEC-CEI	100L/112M-B14-F165	132-B5-F265	160-B5-F300	100L/112M-B14-F165	132-B5-F265	160-B5-F300	180M-B5-F300	
dw	391	429	459	401	439	469	469	
mc		50			5	0		
tw		186,5		186,5				
tz		392			39	92		



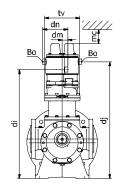


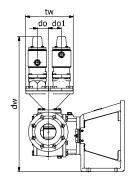
6.4.3 Beheiztes Sicherheitsventil

	TG	BLOC15	5-50		TG BLO	C23-65	5	
MOTOR IEC-CEI	100L/112M-B14-F165	132-B5-F265 160-B5-F300		100L/112M-B14-F165	132-B5-F265	160-B5-F300	180M-B5-F300	
Во		G 1/2		G 1/2				
di		107			10)7		
dj		125			12	25		
du	253	291	321	263 301 331 331				
dm		63,5			6	1		
DN		114			1 -	14		
do		6,5			4	1		
dv	294	332	362	304	341	372	372	
mc		50			5	0		
tg		196			19	96		



		TG BLC	C58-80)	T	G BLO	C86-10	0	
MOTOR IEC-CEI	160-B5-F300	180L-B5-F300	200L-B5-F350	225-B5-F400	160-B5-F300	180L-B5-F300	200L-B5-F350	225-B5-F400	
Во		G	1/2		G 1/2				
di	438	438	458	483	464	464	484	509	
dj	478	478	498	523	504	504	524	549	
dm		98	3,5		103,5				
DN		12	27			1:	27		
do		(3			8	3		
dv	571	571	591	616	597	597	617	642	
mc		7	0		70				




6.4.4 Beheiztes doppeltwirkendes Sicherheitsventil

	TG	BLOC1	5-50	TG BLOC23-65				
MOTOR IEC-CEI	100L/112M-B14-F165	132-B5-F265	160-B5-F300	100L/112M-B14-F165	132-B5-F265	160-B5-F300	180M-B5-F300	
Во	G 1/2				G	1/2		
di	107			107				
dj	125			125				
du	354 392 422		422	364	402	432	432	
dm	97,5			100				
dm1		110,5			10	8		
DN		114			11	14		
do		40,5			4	3		
do1	53,5			5	1			
dw	395	433	463	405	443	473	473	
mc	50			50				
tw	186,5		186,5					
tg	196			196				
tz		392			39	92		

		TG BLO	C58-80			TG BLO	C86-100	
MOTOR IEC-CEI	160-B5-F300	180L-B5-F300	200L-B5-F350	225-B5-F400	160-B5-F300	180L-B5-F300	200L-B5-F350	225-B5-F400
Во	G 1/2					G	1/2	
di	549,5	549,5	569,5	594,5	585,5	585,5	605,5	630,5
dj	589,5	589,5	609,5	634,5	625,5	625,5	645,5	670,5
dm	98,5				103,5			
DN		12	27		127			
do	55				69,5			
do1	67					85	5,5	
dw	682	682	702	727	718	718	738	763
mc	70					7	0	
tw	241,5				303,5			
tv	178					2	19	

6.5 Gewichte - Masse

	Mat.	Lagerträger	Masse	Gewicht	TG BLOC15-50	TG BLOC23-65	TG BLOC58-80	TG BLOC86-100
		F165	kg	daN	33	38	-	-
		F265	kg	daN	37	43	-	-
	Grauguss (G)	F300	kg	daN	48	53	79	95
		F350	kg	daN	-	-	83	98
Pumpe (ohne Mäntel)		F400	kg	daN	-	-	94	110
Tumpe (office Mariter)		F165	kg	daN	37	42	-	-
		F265	kg	daN	41	47	-	-
	Edelstahl (R)	F300	kg	daN	52	57	83	100
		F350	kg	daN	-	-	87	103
		F400	kg	daN	-	-	98	115
Front-Pullout	Grauguss (G)		kg	daN	2,5	3,5	9	12
(Pumpendeckel+Ritzel)	Edel-stahl (R)		kg	daN	3	4	10	13
		F165	kg	daN	20	22	-	-
	Grauguss (G)	F265	kg	daN	24	27	-	-
		F300	kg	daN	35	37	48	54
		F350	kg	daN	-	-	52	57
Back-Pullout		F400	kg	daN	-	-	63	69
(Welle+Zwischen- gehäuse+Lagerträger)	Edelstahl (R)	F165	kg	daN	22	24	-	-
		F265	kg	daN	26	29	-	-
		F300	kg	daN	37	39	51	57
		F350	kg	daN	-	-	55	60
		F400	kg	daN	-	-	66	72
Mäntel	Grauguss (G)		kg	daN	2	2	5	6
(Zusatz)	Edelstahl (R)		kg	daN	2,5	3	5	6
Sicherheitsventil	Grauguss (G)		kg	daN	5	5	7	10
(Zusatz)	Edelstahl (R)		kg	daN	5	5	8	11
Doppeltwirkendes	Grauguss (G)		kg	daN	13	13	24	36
Sicherheitsventil (Zusatz)	Edelstahl (R)		kg	daN	15	15	27	39

Konformitätserklärung für Materialien mit Lebensmittekontakt

Hersteller

SPX Flow Europe Limited – Belgien Evenbroekveld 2-6 9420 Erpe-Mere Belgien

Hiermit bescheinigen wir die Konformität der Materialien, die bei der bestimmungsgemäßen Verwendung mit Lebensmitteln in Berührung kommen, zum Zeitpunkt dieser Erklärung mit den allgemeinen Anforderungen der

Verordnung (EG) Nr. 1935/2004 des Europäischen Parlaments und des Rates vom 27. Oktober 2004 über Materialien und Gegenstände, die dazu bestimmt sind, mit Lebensmitteln in Berührung zu kommen und zur Aufhebung der Richtlinien 80/590/EWG und 89/109/EWG.

Diese Erklärung gilt für das bzw. die folgende(n) Produkt(e):

Produkt: TopGear Pumpe mit internem Getriebe

Konfigurationen: TG GP xx-xx FD G# OS UG6 UG6 AW

TG GP xx-xx FD G# OS UR6 UR6 AW

TG GP xx-xx FD G# SS UG6 UG6 AW TG GP xx-xx FD G# SS UR6 UR6 AW

TG GP xx-xx FD G# OS SG2 SG2 AW

TG GP xx-xx FD G# OS UG6 SG2 AW

TG GP xx-xx FD G# SS SG2 SG2 AW

TG GP xx-xx FD G# SS UG6 SG2 AW

TG GM yy-yy FD G# OO SG2 BG2 PRAW

TG GM yy-yy FD G# OO UG6 BG2 PRAW

TG GM yy-yy FD G# OO UR6 BR6 PRAW

TG GM yy-yy FD G# OO SG2 SG2 GS WV

TG GM yy-yy FD G# OO UR6 UR8 GS WV

TG GM yy-yy FD G# OO UG6 SG2 GS WV

TG GM xx-xx FD G# OS SG2 BG2 PRAW

TG GM xx-xx FD G# OS UG6 BG2 PRAW

TG GM xx-xx FD G# OS UR6 BR6 PRAW

TG GM xx-xx FD G# OS SG2 SG2 GS WV

TG GM xx-xx FD G# OS UR6 UR8 GS WV

TG GM xx-xx FD G# OS UG6 SG2 GS WV

TG GM xx-xx FD G# SS SG2 BG2 PRAW

TG GM xx-xx FD G# SS UG6 BG2 PRAW

TG GM xx-xx FD G# SS UR6 BR6 PRAW

TG GM xx-xx FD G# SS SG2 SG2 GS WV TG GM xx-xx FD G# SS UR6 UR8 GS WV

TG GM xx-xx FD G# SS UG6 SG2 GS WV

TG H xx-xx FD R# OO UR6 BR6 PRAW

TG H xx-xx FD R# OO UR6 UR8 GS WV

TG H xx-xx FD R# SS UR6 BR6 PRAW

TG H xx-xx FD R# SS UR6 UR8 GS WV

mit: xx-xx: von 6-40 bis 360-150 yy-yy: von 6-40 bis 23-65 #: 1, 2, 3, 4 oder 5

TG BLOC xx-xx FD G# O SG2 G1 WV

TG BLOC xx-xx FD G# S SG2 G1 WV

TG BLOC xx-xx FD R# O UR4 R4 WV TG BLOC xx-xx FD R# S UR4 R4 WV

Für Werkstoffe aus Kunststoff gelten zusätzlich folgende Erklärungen:

 "Zertifikat der Übereinstimmung mit EG1935/2004 Lebensmittelkontakt" für Dichtungen aus Gylon[®] vom Lieferanten Eriks+Baudoin

(siehe Seite 62)

• "Zertifikat der Übereinstimmung mit EG1935/2004 Lebensmittelkontakt" für Dichtungen aus Clipperlon vom Lieferanten Eriks+Baudoin

(siehe Seite 63)

 "Erklärung gem. FDA-Richtlinie" für Gleitringdichtung M7N vom Lieferanten EagleBurgmann

(siehe Seite 64-65)

Diese Erklärung gilt für einen Zeitraum von drei Jahren ab dem Datum, an dem die Pumpe unsere Produktionsstätte verlassen hat. Diese Erklärung ändert nichts an den vertraglichen Vereinbarungen, insbesondere hinsichtlich der Gewährleistung und Haftung.

Erpe-Mere, 01. November 2021

Frank Vander Beken Leiter der Niederlassung

ERIKS + BAUDOIN

Antwerpen - *Anvers - Antwerp* Boombekelaan 3 B-2660 Hoboken België - *Belgique - Belgium* tel. +32-3 829 26 11

fax. +32-3 828 39 59

SPX Process Equipment BE NV Evenbroekveld 2-4 B-9420 ERPE-MERE

Conformiteitsattest EU1935/2004 voedingscontact

Attestation de conformité CE 1935/2004 contact avec des denrées alimentaires

Certificate of compliance with EC1935/2004 food contact

EN 10204 2.1

Omschrijving Dénomination Description

Gylon® BLUE 3504

☑ AQUEOUS FOOD

☑ FATTY FOOD

☑ DRY FOOD

Wij bevestigen U, dat de door ons geleverde en hierboven beschreven goederen voldoen aan de EU1935/2004 voorschriften voor gebruik in de voedingsindustrie.

Par la présente nous vous confirmons que la matériel livré en annexe , selon votre commande en référence , répond aux normes en vigueur suivant les spécifications de la CE1935/2004 (Pour produits alimentaires)

We hereby confirm that the goods supplied with the above references are suitable for contact with food in accordance with EC1935/2004 regulation

ERIK\$ nv

Koen Fierens Kwaliteitsdienst Département Qualité Quality Department

Declaration of Compliance

Product/material CLIPPERLON 2135 FG

Date of declaration 20-6-2019

To European legislation EC 1935/2004 EU 10/2011

To FDA regulation CFR 21§177.1550

We confirm that the above mentioned material is compliant to the above mentioned regulations and legislations.

Products from this material are intended for repeated use in contact with the below listed type of foods.

This material has been evaluated according to the requirement of the of the Regulation EC 1935/2004, Annex I. Materials intended to come into contact, directly or indirectly, with food.

The safety of this material has been verified by testing against the migration requirements as described in EU 10/2011 and in accordance with EN1186.

This material has been tested following the FDA regulation on extraction.

ERIKS guarantees that all products of this material are produced according the directive for GMP (Good Manufacturing Practice) 2023/2006/EC, which is part of the guideline EC 1935/2004.

The traceability of the products derived from this material is secured and the regulations for documentation and labelling protocol have been fulfilled.

Migration test results EU 10/2011 (EN1186) - test perfomed on base material

Simulant	Simulant media	Type of food	Time/temperature	Ratio S/V
Α	10% Ethanol	Aqueous food	4 hours at 100°C	6
В	3% Acetic acid	Acidic food with pH <4,5	4 hours at 100°C	6
D2	Olive Oil	Free fat on the surface	2 hours at 175°C	6

Test	Requirements
Extraction in ethyl acetate 2 hours	Max. 3,1 mg/dm²
Extraction in demi-water 2 hours	Max. 3,1 mg/dm²
Extraction in n-heptane 2 hours	Max. 3,1 mg/dm²
Extraction in ethanol 50% 2 hours	Max. 3,1 mg/dm²

For more information phone +31 72 514 15 14 or E-mail info@eriks.nl

This declaration is not intended as technical documentation, the suitability of this product for a specific application should be verified with ERIKS.

This declaration is valid until revocation or renewal.

ERIKS bv | P.O. Box 280 | 1800 BK ALKMAAR, The Netherlands | T +31 72 5141514 | E info@eriks.nl | www.eriks.com

EagleBurgmann.

Buka 20 (Q2, Q22)

Bestätigung gemäß FDA-Forderung Confirmation acc. FDA-requirement Confirmation suivant la prescription FDA

Seite 1 2 Page

Besteller: Customer: Client:	EagleBurgmann Belgium BVBA	BestNr./ Datum: Order-no./ date: No.de commande:	B104898 / 30.11.2010
		Besteller-AuftrNr.: Order.no.(Customer): No.de command (client):	389607
Hersteller: Manufacturer: Fabricant:	EagleBurgmann Germany	Kommission: Commissionno.: No.de commande:	A70 968
Gegenstand: Object: Désignation:	Gleitringdichtung Mechanical seal Garniture mécanique d'étanchétié	ZeichnNr.: Drawing-no.: No. de plan:	M7N/40-00 (002391 047)
FabrNr.: Fabrno.: No.de fabrication:		Stück: Quantity: Nombre:	6
Einzelteil:	Gleitringe und Gegenringe	Werkstoffe:	Buka 22 (Q1, Q12)

Bestätigung / Confirmation / Confirmation

component Part:

nièce détachée:

Seal faces and Stationary seats

Grains tournants et Contre-grains

Hiermit bestätigen wir, daß EagleBurgmann Gleitringe und Gegenringe aus den Werkstoffen Buka 20 / Buka 22 gemäß FDA-Information vom 24.05.1989 lebensmitteltauglich sind.

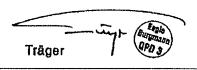
Materials:

Materiaux:

Herewith we certify that EagleBurgmann seal faces and stationary seats made of material Buka 20 / Buka 22 can be used in food applications in accordance with the FDA-information of may, 24.1989.

Nous confirmons par la présente que les grains tournants et les contre-grains en Buka 20 / Buka 22 de EagleBurgmann sont convenables pour l'alimentation selon la information FDA du 24.05.1989.

Bemerkungen / Remarks / Remarques


SiC, Siliziumkarbid, drucklos gesintert / Silicon carbide pressureless sintered. Buka 22 Carbure de silicium, fritté sans pression

Buka 20 SiC-Si, Siliziumkarbid, reaktionsgebunden / Silicon carbide reaction bonded,

Carbure de silicium dép. de la réaction

EagleBurgmann Germany GmbH & Co. KG 82502 Wolfratshausen Telefon 08171/23-0 Telefax 08171/23-1214 www.eagleburgmann.com

Wolfratshausen, den 22.01.2011

EagleBurgmann.

Bestätigung gemäß FDA-Forderung Confirmation acc. FDA-requirement Confirmation suivant la prescription FDA

(CFR 21)

Beleg-N Certno		1		
Seite Page	2	von of	2	

Besteller: Customer: Client:	EagleBurgmann Belgium BVBA	BestNr./ Datum: Order-no./ date: No.de commande:	B104898 / 30.11.2010
		Besteller-AuftrNr.: Order.no.(Customer): No.de command (client):	389607
Hersteller: Manufacturer: Fabricant:	EagleBurgmann Germany	Kommission: Commissionno.: No.de commande:	A70 968
Gegenstand: Object: Désignation:	Gleitringdichtung Mechanical seal Garniture mécanique d'étanchétié	ZeichnNr.: Drawing-no.: No. de plan:	M7N/40-00 (002391 047)
FabrNr.: Fabrno.: No.de fabrication:		Stück: Quantity: Nombre:	6
Einzeltell:	Runddichtringe	Warketoffa	

Bestätigung / Confirmation / Confirmation

Joints toriques

O-rings

Hiermit bestätigen wir, daß EagleBurgmann Runddichtringe aus Werkstoff V16 den Anforderungen gemäß FDA-Vorschrift "Code of Federal Regulation, Title (CFR 21), § 177.2600" entsprechen.

Herewith we certify that EagleBurgmann O-rings made of material V16 fulfill the requirements of FDA-regulation "Code of Federal Regulation, Title (CFR 21), § 177.2600".

Werkstoffe:

Materials:

V16

Nous confirmons par la présente que les joints toriques EagleBurgmann en V16 sont conformes aux demandes selon la prescription FDA "Code of Federal Regulation, Title (CFR 21), § 177.2600".

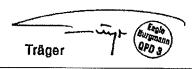
Bemerkungen / Remarks / Remarques

V16 =

Einzelteil:

component Part:

plèce détachée:


Fluor-Kautschuk /

Fluorcarbon rubber /

Elastomère en carbone fluoré

EagleBurgmann Germany GmbH & Co. KG 82502 Wolfratshausen Telefon 08171/23-0 Telefax 08171/23-1214 www.eagleburgmann.com

Wolfratshausen, den 22.01.2011

ANMERKUNGEN

<u>ANMERKUNGEN</u>

TopGear BLOC

INNENVERZAHNTE VERDRÄNGERPUMPEN

SPX FLOW EUROPE LIMITED BELGIUM

Evenbroekveld 2-6

BE-9420 Erpe-Mere, Belgien

T: +32 (0)53 60 27 15

F: +32 (0)53 60 27 01

E: johnson-pump.be@spxflow.com

SPX FLOW behält sich das Recht vor, Konstruktions- oder Werkstoffänderungen ohne vorherige Ankündigung oder Verpflichtung vorzunehmen. Konstruktionsabbildungen, Werkstoffe sowie Maßangaben, die in dieser Publikation enthalten sind, dienen lediglich Ihrer Information. Die Richtigkeit der Angaben ist ohne weitere schriftliche Bestätigung nicht garantiert.

Bitte wenden Sie sich zur Verfügbarkeit der Produkte in Ihrer Region an Ihren örtlichen Verkaufsrepräsentanten. Zu weiteren Informationen besuchen Sie bitte www.spxflow.com.

VERÖFFENTLICHT 11/2021 A.0500.757 DE COPYRIGHT ©2020, 2021 SPX FLOW Corporation