USE THE 50, 75 OR 200 GPM TESTER TO SIMULATE ACTUAL OPERATING CONDITIONS **OF THE SYSTEM UNDER TEST**

Testing the pump: Operator runs engine at a specific rpm and adjusts tester's pressure compensating valve to simulate a work load. By comparing meter readings with manufacturer specs, proper operation of pump can be confirmed. If oil flow and pressure do not meet specs, the pump is faulty. Or, if test results and specifications agree, the operator will know that the problem is elsewhere in the system and that other tests must be performed. Regardless of the component being tested, hook-up and testing is accomplished in minutes. NOTE: These hydraulic testers should always be used with the owner's manual/ manufacturers' specifications for the system under test.

MEASUREMENTS/ SPECIFICATIONS

Conversion Formulas

500

6

2"

8"

71/4

Random Random Random

Cyl. Caps furnished with "C" Series Cylinders:		DEDEODMANCE	Pump	Cylinder	Time to Ex 100 psi	tend Cylinder 1' 10,000 psi
5 ton cylinders 10 ton cylinders 15 ton cylinders	No. 201375 No. 201362 No. 201362 No. 201412 No. 36161 No. 36161 No. 36161	PERFORMANCE The table at right gives you an idea of what to expect when coupling RD series cylinders to a Power Team pump. Actual performance will vary according to job conditions.	PE55	RD55 RD100 RD200	1.0 sec. 1.8 sec. 3.5 sec.	12.0 sec. 22.5 sec. 45.0 sec.
25 ton cylinders 55 ton cylinders 75 ton cylinders 100 ton cylinders			PQ120 Series	RD400 RD200 RD300 RD400 RD500	7.2 sec. 3.4 sec. 4.9 sec. 6.4 sec. 8.1 sec.	85.0 sec. 20.6 sec. 30.0 sec. 39.0 sec. 49.5 sec.
See page 15.		See page 24-25.	PE400 Series	RD300 RD400 RD500	3.0 sec. 3.9 sec. 4.9 sec.	8.5 sec. 11.1 sec. 14.1 sec.

NOTE: Base mounting holes are standard on all RD cylinders.Orientation of base mounting holes to coupler. Orientation on RD300, RD400 & RD500 series is random.

45

Orientation

2"

90°

23/4

45°

BASE MOUNTING HOLES FOR "RD" CYLINDERS

⁺_{90°} See page 24-25. Tonnage 80 100 150 200 300 400 10 25 55 No. of Holes 2 4 4 4 4 4 4 4 4 Thread Size 3/8"-16 1/2"-13 5/8"**-11** 5/8"-11 3/4"-10 1"-8 11/4"-7 11/4"-7 11/2"-12 13/8"-12 Depth 5/8" 3/4" 7/8" 7/8" 1" 1" 11/4 13/4" 17/8 B.C. Dia.

41/2"

45°

51/2"

45°

6"

45°

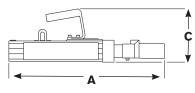
61/2"

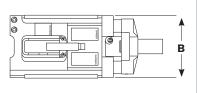
45°

61/4"

MOUNTING HOLES FOR "RLS" CYLINDERS

See page 18.


31/2


45°

RLS50	¹¹ / ₃₂ " C'bore x ¹ / ₄ " deep, ⁷ / ₃₂ " thru hole	RLS200	³⁹ / ₆₄ " C'bore x ¹³ / ₃₂ " deep, ¹³ / ₃₂ " thru hole	RLS	 ^{45/64"} C'bore x ¹ /2" deep, ¹⁵ /32" thru hole	RLS1000S	⁵¹ / ₆₄ " C'bore x ⁹ / ₁₆ " deep, ¹⁷ / ₃₂ " thru hole
RLS100	²⁷ / ₆₄ " C'bore x ¹¹ / ₃₂ " deep, ⁹ / ₃₂ " thru hole	RLS300	³⁹ / ₆₄ " C'bore x ⁷ / ₁₆ " deep, ¹³ / ₃₂ " thru hole	RLS	 ⁵¹ / ₆₄ " C'bore x ⁹ / ₁₆ " deep, ¹⁷ / ₃₂ " thru hole	RLS1500S	¹³ /16" C'bore x ⁹ /16" deep, ¹⁷ /32" thru hole

POST TENSION/STRESSING JACK DIMENSIONS

See page 157.

Order Number	A (in.)	B (in.)	C (in.)	Weight (lbs.)
SJ2010	21	9	6 ¹ / ₂	55
SJ2010	22	10 ¹³ / ₆₄	7	76
SJ3010	22	10 ¹³ / ₆₄	7	76
SJ3010P	22	10 ¹³ / ₆₄	7	76
SJ2010DA	18¹/ 2	7 ¹ / ₂	6 ¹ / ₂	42
SJ3010DA	18 ¹ / ₂	8 ¹ / ₂	6 ¹ / ₂	52

RESOURCES